Защита от превышения напряжения – Схема подключения УЗИП — 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.

Содержание

Устройство защиты от перенапряжения

Содержание:

  1. Причины возникновения и опасность скачков напряжения
  2. Длительные перенапряжения и провалы из-за недостатка напряжения
  3. Разновидности и принцип действия защитных устройств
  4. Молниезащита от перенапряжений
  5. Ограничители перенапряжений
  6. Другие виды защитных устройств
  7. Видео

В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.


Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.


Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.


Виды и принцип действия защитных устройств

Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:

  • Молниезащитные системы.
  • Стабилизаторы напряжения.
  • Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
  • Реле перенапряжения.

Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.

Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.

Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.


Молниезащита от перенапряжений

Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.

1.

Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.

В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.

2.

Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.

И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.

3.


Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.


Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.


electric-220.ru

Устройства защиты от перенапряжений

Обычно в любых электрических сетях напряжение находится в пределах, определяемых техническими нормативами, но иногда оно отклоняется от допустимых значений. Предельно допустимое напряжение находится в пределах ±10 % от номинального значения напряжения, т. е. для однофазной сети в диапазоне 198—242 В, а для трехфазной — 342—418 В. Отклонения от указанных значений называются перенапряжениями. Перенапряжения имеют различную природу и в зависимости от этого отличаются длительностью и величиной. Длительные перенапряжения (свыше 0,01 с) обычно возникают из-за неисправности понижающего трансформатора на подстанции или обрыва нулевого провода в питающей сети.

Такие перенапряжения имеют сравнительно небольшие значения (от 230 В до величины междуфазного напряжения — 380 В), но действуют длительное время и представляют вполне реальную угрозу и для человека, и для оборудования. Длительное повышение напряжения может произойти и в случае неравномерного распределения нагрузок по фазам во внешней сети. Тогда возникает перекос фаз, при котором на самой загруженной фазе напряжение становится ниже, а на незагруженной — выше номинального. Кратковременные всплески напряжения могут произойти и в результате переключений в энергосети или во время включения мощных реактивных нагрузок.

Для надежной защиты домашней электропроводки от перенапряжений рекомендуется создание многоуровневой (по крайней мере, трехступенчатой) системы защиты из УЗИП разных классов. УЗИП класса В (тип 1) рассчитано на номинальный разрядный ток 30— 60 кА, УЗИП класса С (тип 2) — на ток 20—40 кА. УЗИП класса D (тип 3) на ток 5—10 кА. При создании многоступенчатой системы защиты от перенапряжений следует обеспечить соответствие мощности каждой ступени, т. е. максимальный ток, протекающий через них, не должен превышать их номинальных характеристик. Но в первую очередь необходимо создать эффективную систему заземления.

Мощные импульсные перенапряжения (с токами до 100 кА) могут возникать при воздействии грозовых разрядов. При этом напряжение может достигать десятков киловольт. Такие импульсы длятся в течение максимум сотни микросекунд, и защитные автоматы не успевают на них среагировать, так как самые современные типы автоматов имеют время срабатывания единицы миллисекунд, что может стать причиной пробоя и повреждения изоляции между фазой и нейтралью или между фазой и землей. Как правило, это не приводит к короткому замыканию и не нарушает работу сети, но в месте повреждения изоляции возникает небольшой ток утечки. И если он проходит между фазой и нейтралью, то не фиксируется УЗО и автоматами защиты, но зато приводит к повышенному нагреву изоляции и ускорению процесса ее старения. С течением времени сопротивление изоляции на этом участке уменьшается, а ток утечки возрастает.

Последствия воздействия этих негативных факторов на электронное оборудование и электропроводку могут быть фатальными, поэтому домашняя сеть требует комплексной защиты от перенапряжений с использованием различных типов устройств (УЗИП, ОП, PH и т. д.).

Возможность использования различных УЗИП для выполнения конкретных защитных функций определяется по техническим характеристикам, отраженным в маркировке прибора.

Уровень напряжения защиты U является важнейшим параметром, характеризующим УЗИП. Он определяет значение остаточного напряжения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока. Для УЗИП 1-го класса Up не должен превышать 4 кВ, для устройств 2-го класса — 2,5 кВ, для 3-го класса УЗИП устанавливается Up не более 1,5 кВ — тот уровень микросекундных импульсных перенапряжений, который должна выдерживать бытовая техника.

Максимальный разрядный ток Imax — величина импульса тока, которую должно выдержать УЗИП однократно, сохранив при этом работоспособность.

Номинальный разрядный ток 1n — величина импульса тока, которую УЗИП должно выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами.

Максимальное длительное рабочее напряжение Uc — действующее значение напряжения переменного или постоянного тока, которое длительно подается на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети. Номинальный ток нагрузки Ii( — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

При необходимости дополнительной защиты конкретных приборов используются устройства, выполненные в виде вставок и удлинителей, — сетевые фильтры. В их конструкцию включены варисторы, подавляющие импульсные скачки напряжения.

Варисторы — это полупроводниковые резисторы, в работе которых используется эффект уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения, за счет чего они являются наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида. Варистор включается параллельно защищаемому оборудованию и при нормальной эксплуатации находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме ток через варистор пренебрежимо мал, и он в этих условиях представляет собой изолятор. При возникновении импульса напряжения сопротивление варистора резко уменьшается до долей ома. В этом случае через него кратковременно может протекать ток, достигающий нескольких тысяч ампер. После гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Выбор УЗИП производится в соответствии с принятой системой защиты. При этом обязательно учитываются технические характеристики устройств, которые должны быть приведены в каталоге и нанесены на лицевой части корпуса прибора.

При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств. Первая ступень защиты класса В монтируется за пределами дома во входном щите.

УЗ-6/220, УЗ-18/380 предназначены для защиты сети от кратковременных (до 12 кВ) и длительных перенапряжений, вызванных коммутационными, индуктивными и грозовыми процессами. Устройства относятся к УЗИП 2-го и 3-го классов и выполнены на варисторах. Для надежной защиты от длительных перенапряжений, вызванных авариями в сети, прибор нужно подключать после УЗО и заземлять. Только при таком подключении создается ток утечки и обеспечивается срабатывание УЗО.

Устройство защиты от импульсных перенапряжений (УЗИП) предназначено для предотвращения возможных повреждений бытовой техники от мощных импульсных перенапряжений, вызванных авариями в питающей сети или грозовыми разрядами. Устройства такого типа могут называться ограничителями перенапряжений (ОП). Они, как правило, изготовлены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе их из строя. Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN-рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

В зависимости от защищаемой зоны ограничители перенапряжений подразделяются на классы или типы. Приборы класса В (тип 1) защищают объекты от атмосферных и коммутационных перенапряжений, прошедших через разрядники класса А внешних сетей. Они устанавливаются на вводном устройстве дома и ограничивают величину перенапряжений до 4,0 кВ, защищая вводные счетчики и электрическое оборудование распределительного щита.

Ограничители класса С (тип 2) защищают электрооборудование от перенапряжений, прошедших через ограничители класса В, и ограничивают величину перенапряжения до 2,5 кВ. Они устанавливаются в распределительных щитках внутри дома или квартиры и осуществляют защиту автоматических и дифференциальных выключателей, внутренней проводки, контакторов, выключателей, розеток и др. Ограничители класса D (тип 3) являются защитой от перенапряжений, прошедших через приборы класса С, и ограничивают их величину до 13 кВ. Такие ограничители устанавливаются в распределительные коробки, розетки и могут встраиваться в само оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, а также переносных электрических устройств.

Ограничитель перенапряжений серии 0П-101 на основе варистора предназначен для защиты электрооборудования от импульсных перенапряжений, вызванных ударами молнии или коммутационными перенапряжениями. При возникновении скачка перенапряжения варисторы прибора переходят в проводящее состояние, ток возрастает на несколько порядков, достигая сотен и тысяч ампер и ограничивая при этом дальнейшее нарастание напряжения на выводах. После прохождения волны перенапряжения ограничитель возвращается в непроводящее состояние. Время срабатывания прибора составляет около 25 нс.

Ограничители перенапряжений серии 0П-101 бывают однофазными или трехфазными. Трехфазные устройства класса В устанавливаются на трехфазном вводе. Однофазные (класса D) используются для защиты отдельных потребителей или групп.

В распределительном щите внутри дома устанавливаются варисторные УЗИП класса С или D (тип 2 и 3). Недостатком УЗИП на базе варисторов является то, что после срабатывания оно нуждается в охлаждении, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократных разрядах. Безусловно, использование УЗИП снижает вероятность выхода из строя оборудования или поражения людей, но лучше всего во время грозы отключать наиболее важные приборы.

Устройство защиты многофункциональное (УЗМ) предназначено для защиты оборудования (в доме, квартире или офисе и пр.) от разрушающего воздействия мощных импульсных скачков напряжения, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170—270 В) в однофазных сетях. Включение напряжения происходит автоматически при восстановлении его до нормального по истечении задержки повторного включения. Устройство представляет собой реле контроля напряжения с мощным электромагнитным реле на выходе, дополненное защитой на варисторах.

Реле напряжения (PH) — это прибор, сочетающий в себе электронное устройство контроля напряжения и электромагнитный расцепитель, собранные в одном корпусе. Реле напряжения серии PH — весьма эффективное устройство для защиты оборудования при возникновении длительных перенапряжений. Оно предназначено для отключения бытовой и промышленной однофазной нагрузки 220 В, 50 ГЦ при недопустимых колебаниях напряжения в сети с последующим автоматическим включением после восстановления ее параметров. Реле может быть изготовлено на базе микропроцессора или простого компаратора и оснащено устройством регулировки верхнего и нижнего порога срабатывания.

Реле напряжения могут быть как однофазными, так и трехфазными. Трехфазные реле напряжения используются на трехфазном вводе для защиты трехфазного оборудования. Они, как правит, отключают сеть не напрямую, а через электромагнитный контактор. При отсутствии трехфазных потребителей лучше всего будет поставить на каждую фазу по однофазному реле напряжения.

В зависимости от способа подключения реле напряжения могут быть выполнены в виде переносного устройства типа «вилка—розетка» или для установки в распределительном шкафу на DIN-рейку. Обычно такие реле имеют широкий диапазон регулировок и могут работать в нескольких независимых режимах: как реле напряжения, как реле минимального напряжения, как реле максимального напряжения или как реле времени с задержкой на включение.

Реле напряжения работают в диапазоне 100—400 В и делятся на устройства, имеющие свою контактную группу и управляющие нагрузкой самостоятельно, а также реле, которые управляют нагрузкой через более мощные контакторы.

Некоторые типы реле напряжения могут использоваться для самостоятельного отключения электрической сети при возникновении аварийного напряжения. Они обладают большей коммутационной способностью и управляют сетью с нагрузкой до 13 кВт, что вполне достаточно для квартиры или частного дома. Приборы устанавливаются на вводе после электросчетчика и УЗО на DIN-рейку.

Реле напряжения не имеет встроенной защиты от высоких токов, поэтому его нужно устанавливать после автоматического выключателя. При этом номинальный ток реле должен быть на 20—30 % выше номинального тока автомата. Реле напряжения также не защищают от высокого напряжения остаточных токов грозовых разрядов.

Датчик превышения напряжения ДПН 260 предназначен для ограничения максимально допустимого напряжения на нагрузке. Он работает совместно с УЗО или дифференциальным автоматом с током утечки 30—300 мА Напряжение срабатывания ДПН 260 устанавливается в пределах 255—260 В, время срабатывания — 0,01 с. Он выполнен в стандартном модуле на базе обычного варистора и предназначен для установки на DlN-рейку 35 мм. Следует отметить, что датчик создает ток утечки и вызывает срабатывание УЗО, которое не может включиться самостоятельно, что является его основным недостатком.

Контактор — это коммутационный аппарат дистанционного действия, коммутирующий нагрузки переменного или постоянного тока, который предназначен для частых включений и отключений. Они могут управлять осветительными, обогревательными и другими устройствами в силовых цепях постоянного и переменного тока с напряжением до 380 В и частотой 50 Гц.

Контакторы не обладают защитными функциями, но эффективно работают совместно с реле напряжения, обеспечивая своевременное отключение сети. Достоинством этих устройств является надежная контактная группа, способная выдержать большое число включений и отключений при значительной мощности управляемой нагрузки.

Контакторы могут использоваться, например, для управления режимом работы системы обогрева полов, когда мощность нагревательных кабелей превышает допустимую мощность терморегулятора.

Контактор, управляемый выключателем, импульсным реле, таймером или другим датчиком, позволяет включить (выключить) необходимую нагрузку, с которой электронные реле, рассчитанные на сравнительно небольшие токи, самостоятельно справиться не могут. Контакторы являются незаменимым элементом многофункциональной системы типа «Умный дам».

Контакторы могут быть как однофазными, так и трехфазными. Основными параметрами, по которым осуществляют выбор контакторов, являются следующие:

  • Номинальное рабочее напряжение сети
  • Номинальный рабочий ток
  • Напряжение катушки управления
  • Каличество/вид дополнительных контактов

Смотрите также:

profstroy.net

5. Защита электронных устройств от перенапряжения

Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается. Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30…35 6. При низковольтном питании происходит просто плавление проводника. Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения.
Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.
Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.
Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.
Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.
Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель. Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток. В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.


Рис. 4.1. Простейшая защита от перенапряжения

Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения

Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2. Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения.
Следующее устройство (рис. 4.3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении
напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].
При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.


Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии

Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.
При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1.
Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.
Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5…5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства.
На рис. 4.4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор. Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.
Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].


Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения


Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе

Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5].
Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.
Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.
Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.
Устройство работоспособно и на постоянном токе.


Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой

Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.
Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.
Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.


Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения

При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю. Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты. При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б. Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.

lib.qrz.ru

причины, способы защиты, куда жаловаться

В резких перепадах напряжения бытовой сети может быть косвенно виновна компания, предоставляющая услуги электроснабжения, но и велика вероятность, что такие процессы вызваны форс-мажорными обстоятельствами. Вне зависимости то причин, последствия для бытовых электроприборов могут быть фатальными. Собранная информация поможет узнать, чем вызваны скачки напряжения, как обезопасить электроприборы, куда подавать жалобу и требование по возмещению ущерба.

Определение термина

Под данным понятием подразумевается резкие перепады сетевого напряжения, выходящие за пределы допустимых отклонений. Напомним, что согласно действующим нормам допустимые отклонения напряжения не должны превышать  от номинала, а предельно допустимые —  Собственно, параметры, характеризующие качественное напряжение указываются в договоре на предоставление услуг. При этом описание допустимых пределов не должно противоречить действующим нормам.

Под данное определение попадает кратковременное перенапряжение и понижение напряжения, а также отклонения (длительностью более минуты) и колебания (продолжительность менее минуты). Под это описание также подходят импульсные перенапряжения, называемые бросками.

Броски напряжения негативно отражаются на качестве напряженияБроски напряжения негативно отражаются на качестве напряжения

Основные причины возникновения скачков напряжения в сети

Есть много причин различного характера, вызывающие отклонения напряжения от нормы в сети частного дома или квартиры. Рассмотрим наиболее распространенные случаи:

  1. Увеличение или уменьшение тока нагрузки в системе электроснабжения. Причина кроется в одновременном подключении к сети мощных электроприборов (электрические печи, бойлеры, масляные обогреватели и т.д.). Наибольший пик нагрузки приходится на вечерние часы, особенно в холодное время года, следствием этого является понижение напряжения.
  2. Перегрузка трансформаторной подстанции может стать причиной нестабильной работы ее оборудования. Проблема заключается в том, что большинство узлов энергосистем проектировались и строились более 30-40 лет назад, соответственно, они были рассчитаны на более низкую нагрузку. Для исправления ситуации необходима модернизация оборудования проблемных узлов, а это требует серьезных финансовых вложений.
  3. Причинами кратковременных скачков напряжения также могут быть аварии на ЛЭП или кабельных магистралях. Это может быть связано как с общим состоянием линий, так и неблагоприятными погодными условиями.
  4. Резкий скачок напряжения происходит при обрыве нуля или плохом электрическом контакте нулевого проводника. В первом случае произойдет повышение напряжения вплоть до 380 Вольт, во втором, будут наблюдаться кратковременные скачки с 220 до 380 В.
  5. Проблемы с внутридомовой разводкой электросети. Причины могут быть связаны с использованием при некачественных материалов, неправильно выполненным монтажом или «старой» проводкой. В результате происходят скачки и колебания напряжения, сопровождаемые сильными импульсными помехами.
  6. Бросок напряжения возникает в тех случаях, когда на смежной линии системы электроснабжения подключен мощный потребитель, например промышленный объект. Известно, что в момент включения электродвигателей образуются сильные пусковые токи, это приводит к тому, что начинает «прыгать» напряжение. Причем установка специальных сетевых фильтров на таком объекте только частично исправляет ситуацию. Заметим, что совсем необязательно жить рядом с промышленным объектом, чтобы ощутить все эти прелести, подобный эффект может давать небольшая мастерская, торговый центр или любое общественное здание оборудованное мощной вентиляционной системой.
  7. К возникновению импульсных перенапряжений может привести попадание молнии в ВЛ. Напряжение импульса может измеряться в киловольтах. Попадание молнии в ЛЭП вызывает сильное перенапряжение сетиПопадание молнии в ЛЭП вызывает сильное перенапряжение сети

Это гарантировано выведет из строя включенные в розетки электрические приборы, несмотря на краткосрочность импульса (порядка нескольких миллисекунд) броска. Большинство устройств, обеспечивающих защиту, просто не успеют сработать.

  1. Возникают скачки и по техногенным причинам, одна из них – обрыв сетевого провода трамвайной или троллейбусной контактной сети с последующим попаданием на ВЛ. Это приведет к тому, что превышение нормального напряжения в сети составит порядка нескольких сотен вольт. На практике встречались случаи, когда в результате такой аварии выгорали (в буквальном смысле) электроприборы в ближайшем доме.
  2. Возникают скачки также при работе сварочного оборудования. Такая проблема более характерна для сельской местности, поскольку в хозяйстве часто возникает потребность для ремонта с применением сварки, например, подварить петли на воротах. Нередко некоторые умельцы с целью сэкономить подключают сварочное оборудование на вход, минуя счетчик и устройства защиты. В результате при образовании дуги происходят скачки и броски электрического тока в линии, от которой также запитаны дома соседей.

Мы назвали далеко не все причины, по которым  образуются скачки входного напряжения, но приведенных примеров вполне достаточно, чтобы подвести итоги. Перепады и скачки могут быть вызваны:

  • Резким изменением нагрузки.
  • Авариями, вызванными воздействием стихии или имеющие техногенную природу.
  • Износом оборудования.
  • Отсутствием резерва мощности.

В первых двух случаях доказать вину компании, предоставляющей услуги, будет проблематично, в последних двух можно рассчитывать на получение компенсации.

Возможные последствия скачков напряжения

Изменения напряжения, выходящие за установленные нормами рамки, потребителям электроэнергии грозят выходом из строя электроприборов. Напомним, что при 220 вольтах нижняя максимально допустимая граница – 198,0 В, верхняя – 242 В.

Наибольшую опасность для домашних электроприборов представляют грозовые перенапряжения, поскольку величина импульса может достигать нескольких киловольт. Ниже представлен блок питания 40” телевизора после попадания разряда молнии в ВЛ, от которой был запитан частный дом. Ни реле напряжения, установленное на вводе, ни внутренняя защита и предохранители электронного устройства сработать не успели.

Блок питания телевизора после попадание молнии в ЛЭПБлок питания телевизора после попадание молнии в ЛЭП

С большой вероятностью бытовая техника «сгорит», если перенапряжение вызвано обрывом нуля. В таких случаях напряжение начинает стремиться к 380,0 В (на практике обычно 300-320 В, но и этого достаточно для выхода приборов из строя).

Броски меньшого уровня вызывают сбои в работе электронного оборудования, а также сокращают срок эксплуатации техники, оборудованной компрессорами или электродвигателями. На электронагревательные приборы незначительные перепады и скачки практически не оказывают серьезного влияния, исключение составляет оборудование с электронной системой управления.

Способы защиты от скачков напряжения

Поскольку нельзя полностью исключить вероятность импульсных скачков, перенапряжений или других видов отклонений от нормы сетевого напряжения, то необходимо найти способ обезопасить дорогостоящую технику. Нет необходимости «изобретать велосипед» поскольку имеются готовые решения. Кратко расскажем о каждом из них.

Реле контроля напряжения

Решить проблему перенапряжения или его проседания можно установив специальное реле напряжения. Данное защитное устройство (не путать с электронным УЗО) производит отключение электроэнергии, если напряжение на вводе выходит за рамки установленного диапазона.

Реле напряжения СР-721МРеле напряжения СР-721М

Восстановление питания происходит после нормализации ситуации. Данные приборы обеспечивают защиту, если произошел обрыв нулевого провода или на сетевые провода ВЛ попадает контактная линия городского электротранспорта. Против импульсных скачков, возникающих при близком грозовом разряде, реле напряжения практически бесполезны.

Следует учитывать, что при защитном отключении пропадает сетевое напряжение, чтобы не ждать в темноте пока стабилизируется питание, рекомендуется обзавестись источником с бесперебойным питанием. Расскажем об особенностях такого решения.

Источники бесперебойного питания

По сути, эти устройства не являются средствами защиты, но используются совместно с таковыми для обеспечения аварийного электропитания. Обеспечивать весь дом бесперебойным питанием нецелесообразно, поскольку это будет очень дорогим решением. Но можно запитать участок электропроводки, например, линию освещения.

Бытовые бесперебойники MakelsanБытовые бесперебойники Makelsan

При выборе ИБП необходимо учитывать суммарную мощность электроприборов, которые будут запитаны от него, и на основании этого выбирать прибор с соответствующим максимальным током. Подробно о выборе ИБП можно узнать из материалов нашего сайта.

Стабилизаторы напряжения

При плохом качестве электроэнергии (скачки, броски и т.д.), рекомендуется использовать специальные стабилизаторы напряжения. Эти устройства особенно эффективны при «проседании» электропитания на входе.

Модельный ряд стабилизаторов КаскадМодельный ряд стабилизаторов Каскад

Стабилизаторы отлично справляются с импульсными помехами, но малоэффективны против высокого уровня перенапряжения, поэтому их рекомендуется использовать совместно с реле напряжения.

Защита от грозовых перенапряжений

Обеспечить надежную защиту в данном случае могут только ограничители перенапряжения. Для частных домов, с питанием от ВЛ, установка ОПН необходима, в противном случае при грозе следует отключать от розеток все электроприборы.

Ограничители перенапряженияОграничители перенапряжения

ОПН эффективны только в качестве защиты от высоковольтных бросков, в остальных случаях они бесполезны.

Как видите, идеальной защиты нет, поэтому необходимо остановиться на комплексном решении.

Куда жаловаться и как компенсировать ущерб?

Обращаться с жалобами, а также за компенсацией ущерба нужно в компанию, с которой заключен договор на предоставление услуг электроснабжения. Заметим, что быстрому рассмотрению способствует подача коллективных заявок, поэтому если инцидент коснулся соседей по улице или других жильцов многоквартирного дома рекомендуем самоорганизоваться и действовать совместными усилиями. Контактные данные поставщика услуг, указаны в договоре.

Если при скачках напряжения сгорела бытовая техника, для получения компенсации необходимо действовать в следующем порядке:

  1. Необходимо обратиться в энергокомпанию, чтобы ее представители зафиксировали факт аварии и составили соответствующий акт.
  2. Пришедшую в негодность технику необходимо отнести в сервисный центр, для составления экспертизы, подтверждающий факт выхода приборов и указания причины.
  3. Пишется письмо-претензия поставщику электроэнергии, к письму прилагается копия акта о факте аварии и заключения экспертизы сервисного центра.
  4. Если компания отказывается возмещать убытки, то данный спор решается в районной судебной инстанции.

www.asutpp.ru

Защита от повышенного напряжения в сети

Величина отклонения величины напряжения в бытовой сети регламентируется ГОСТ 32144-2013. В нем указывается, что повышение или понижение напряжения не должно превышать 10% от номинальной величины. Не соблюдение требований ГОСТ приводит к выходу из строя бытовой техники. Бытовые электроприборы рассчитаны на работу в том диапазоне напряжений питания, которые и упоминаются в ГОСТ. Превышение величиной напряжения порога в 242В заставляет электроприборы работать в критическом режиме, в них происходят перегревы, выходы из строя электронных компонентов, пробои изоляции. Следствие этого – поломка прибора и даже пожар.

Пожар — последствие повышенного напряжения

Признаки повышенного напряжения в сети

  1. Часто выходят из строя лампы.
  2. Лампы накаливания и галогенные лампы светят ярче обычного.
  3. Интенсивность освещения периодически изменяется.
  4. Необычное поведение бытовой техники при работе.
  5. Неожиданные перезагрузки компьютера или его выключение.
  6. Сбои в работе бытовой электроники.

При выходе величины напряжения за допустимые пределы бытовые электроприборы нужно немедленно выключить. Если ситуация регулярно повторяется – обратиться в сбытовую компанию.

Причины повышения напряжения в сети

  1. Перекос фаз. Сети переменного тока выполняются трехфазными. Напряжение между каждой фазой и нулем – 220 В. При проектировании электропроводки дома или дачного поселка потребители (квартиры или частные дома) распределяются по фазам поровну. Но это не значит, что нагрузка разделится одинаково по фазам. Разность в потреблении приводит к перераспределению величин напряжений по фазам: где потребляется меньше – там больше напряжение. Чаще всего этот фактор проявляется в сельской местности.
  2. Обрыв нуля питающей электросети. Это аварийный режим работы сети, который должен немедленно ликвидироваться. В результате аварии с обрывом нуля напряжения перераспределяются еще сильнее, чем при перекосе фаз. Если в первом случае при отсутствии или при минимальной нагрузке одной фазы напряжение на ней повышено, то во втором –приблизится к 380 В! В результате за несколько секунд погибнет вся бытовая техника, которой не посчастливилось работать в момент аварии. Затем начинаются судебные тяжбы с сетевой организацией на предмет возмещения ущерба, ведь ее задача — ревизия контактов и контроль за их состоянием. Сгладить последствия обрыва нуля в сети помогает контур повторного заземления, но чем дальше подстанция от потребителя с контуром – тем менее он эффективен. В черте города же выполнение личного контура заземления невозможно.
  3. Удары молний вблизи от потребителей вызывают кратковременное повышение напряжения в их электропроводке. В современных сетях проектом обязательно предусматривается защита от перенапряжений, но старые сети ее лишены и поэтому – уязвимы.
  4. Ошибки при монтаже или ремонте. Неопытные или невнимательные электрики могут при работах в щитке либо подключить потребителю две фазы (380В), либо забыть подключить на место нулевой провод (случай с обрывом нуля). Поэтому при возникновении сомнений в уровне квалификации электрика – не доверяйте ему работу.

Способы защиты от повышенного напряжения

  • 1. Установка реле контроля напряжения. При повышении напряжения в сети оно отключит электроприборы и спасет их. Когда напряжение нормализуется, реле включит их обратно. Среди реле контроля напряжения выделяются две группы: для подключения в розетку и для установки в распределительный щиток. В первом случае защищается один потребитель, во втором – вся электрика в доме.
Реле напряжения
  • 2. Сетевой фильтр помогает защитить подключенное к нему оборудование: компьютер, телевизор, роутер – от незначительных перенапряжений в сети. Он сглаживает только импульсные воздействия и не изменяет величину напряжения. Помните: не все, что носит название «сетевой фильтр» на самом деле им является, иногда под таким названием продаются обычные удлинители с блоком розеток. В них нет начинки, выполняющей роль защиты от помех, перенапряжений и перегрузок. Приобретайте только сетевые фильтры известных фирм.
Сетевой фильтр
  • 3. Стабилизатор защищает технику без ее отключения от сети. При изменении входного напряжения в рабочем диапазоне он выдает на выходе 220 В. Но при превышении входным напряжением порогового значения, он выключается. Этим дополнительно обеспечивается защита от обрыва нуля. Стабилизатор не защищает от импульсных перенапряжений.
Стабилизатор напряжения
  • 4. Источник бесперебойного питания (ИБП) выполняет все функции стабилизатора и сетевого фильтра, но при отключении напряжения или повышении его величины выше допустимой переходит на питание нагрузки от аккумулятора.
Источник бесперебойного питания
  • 5. УЗИП — устройство защиты от импульсных перенапряжений. Защищает электрооборудование от перенапряжений, вызванных близкими ударами молний.
Устройство защиты от импульсных перенапряжений

Оцените качество статьи:

Понравилась статья? Поделиться с друзьями:

electric-tolk.ru

Ограничитель перенапряжения: устройство, виды, технические характеристики

Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий  или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.

Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных  примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Устройство ограничителя перенапряженияРисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Вольтамперная характеристика ОПНРис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Пример использования ОПНРис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Виды ОПН

В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Фарфоровые ОПНРис. 4: фарфоровые ОПН

Достаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными  параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

полимерные ОПНРис 5: полимерные ОПН

С развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН  подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.

Многоколонковые

В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП.  При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Видео по теме статьи

www.asutpp.ru

Защита от перенапряжения. Что поможет защитить сеть?

Здравствуйте, дорогие читатели. В данной статье рассмотрим что из себя представляет защита от перенапряжения. Поговорим о мерах, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

К примеру, возникновение в бытовой электросети грозового перенапряжения при отсутствии соответствующей защиты приведет к выходу из строя бытовых электроприборов, включенных в тот момент в сеть. А также существует опасность того, что пострадают жители дома. Следовательно, необходимо позаботиться о защите домашней электропроводки от грозовых перенапряжений, чтобы избежать возможных негативных последствий.

Прежде всего, следует отметить, что защита от перенапряжения должна обеспечиваться снабжающей организацией путем установки на линиях электропередач соответствующих защитных устройств. Но, как часто бывает на практике, большинство воздушных линий электропередач находятся в неудовлетворительном состоянии и не имеют должной защиты от возможных перенапряжений. В таком случае вопрос защиты домашней электропроводки от возможных перенапряжений – это проблема самих потребителей.

Модульные ограничители перенапряжения

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН. Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

   Модульный ограничитель перенапряжения

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня. Тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

   Ограничитель импульсных перенапряжений ОПС1-С

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления.

Реле напряжения

Что касается реле напряжения, а также устройств, имеющих соответствующую функцию (стабилизатор, источник бесперебойного питания и др.), то следует учитывать, что данные устройства могут работать в заданных пределах рабочего напряжения, тока и мощности, их изоляция не способна выдерживать высокие напряжения.

   Защита от перенапряжения с помощью реле напряжения

Поэтому в случае попадания молнии грозовой импульс повредит реле напряжения. И другие устройства не только выйдут из строя, но также повредятся электроприборы, включенные в сеть, так как опасный импульс пойдет дальше по электропроводке и включенным в сеть бытовым электроприборам.

То есть реле напряжения не может выполнять функцию защиты от грозовых импульсов. Но все же данное защитное устройство должно быть установлено в домашнем распределительном щитке. Реле напряжения осуществляет отключение электропроводки в случае выхода напряжения за границы допустимых пределов, так как чрезмерное снижение или увеличение напряжения бытовой электрической сети может привести к выходу из строя бытовых электроприборов.

Сетевые фильтры

   Защита от перенапряжения с помощью сетевого фильтра

Большинство сетевых фильтров имеют встроенный варистор, то есть данные устройства осуществляют защиту включенных электроприборов от скачков напряжения. Многие люди приобретают сетевой фильтр и считают, что включенная в него техника будет защищена от возможных перепадов напряжения. Но при этом в большинстве случаев не учитывается тот факт, что варистор сетевого фильтра, как и в ограничителе напряжения, ограничивает опасный импульс перенапряжения только при наличии рабочего заземления электропроводки.

В сетевом фильтре варистор соединяет фазный или нулевой проводник электропроводки с защитным заземляющим проводником. В случае возникновения перенапряжения опасный импульс уходит в заземляющий контур по заземляющему проводнику, тем самым защищая электроприборы от повреждения. Поэтому включение сетевого фильтра в сеть, не имеющую рабочего заземления, сводит на нет защитную функцию. Бытовые электроприборы не будут иметь защиты и в случае возникновения грозового импульса выйдут из строя.

Пути попадания грозовых импульсов

Защита домашней электропроводки от попадания грозовых импульсов не позволяет полностью защитить электроприборы от попадания молнии. Не стоит забывать, что молния может ударить не только в провода электрических сетей, но и в кабельные линии другого назначения, которые проложены открытым способом. В данном случае речь идет о сетевом кабеле интернета, телевизионном и телефонном кабеле. Также молния может попасть в установленную вне помещения антенну.

При попадании молнии в кабель или антенну грозовой разряд попадает в устройство, которое к ним подключено. То есть можно сделать вывод, что наличие защиты бытовой электрической сети от грозовых импульсов не исключает попадание опасных импульсов другим путем.

Какие меры защиты существуют в данном случае

Первое молниеотвод. Многоэтажки уже снабжены грозозащитой дома в целом. В частных домах, молниеотвод, это забота хозяев. Он должен быть с надёжным, испытанным электролабораторией заземлением и разрядниками различных конструкций.

Чтобы исключить возможное попадание грозового импульса через кабель необходимо его отключить от устройства. Например, отключить сетевой кабель от компьютера или маршрутизатора. Либо если идет речь о телевизоре – отключить антенный кабель или кабель кабельного телевидения.

Но не только молния является причиной замолчавших телевизоров. Отгорел нуль – подпрыгнуло напряжение в каких-то фазах из-за их перекоса и пр..

Вывод

В заключении следует отметить, что попадание разряда молнии в бытовые электроприборы, электропроводку очень опасно для людей, находящихся в данный момент в непосредственной близости к данным электроприборам. Если бытовой электроприбор, поврежденный разрядом молнии, можно отремонтировать либо приобрести новый, то для человека это может закончиться плачевно.

Также не исключено возгорание техники или электропроводки в результате попадания грозового импульса. Следовательно, нельзя пренебрегать защитой домашней электропроводки от грозовых перенапряжений. А также стараться по возможности отключать сетевые кабели и внешние антенны в случае приближения грозы.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *