особенности конструкции, принцип работы, схема подключения
Первый электрический осветительный прибор, который изобрели в конце 18 века – лампа накаливания (ЛН). Этот источник света до сих пор пользуется популярностью при организации освещения жилых, производственных помещений, улиц и т. д.
Это устройство имеет простую конструкцию и принцип работы.
На рынке осветительных приборов представлены разные виды лампочек с нитью накала.
Несмотря на то, что сейчас все большую популярность приобретают энергосберегающие лампочки, приборы с нитью накаливания не спешат сдавать позиции.
Конструкция лампы накаливания
Устройство разных видов ламп накаливания незначительно отличается, однако можно выделить 3 общих элемента: тело накаливания, стеклянная колба и токовые вводы. Они отличаются конструкцией держателей (крючки) тела накала, типом цоколей, некоторые из них могут быть бесцокольными.
Чтобы избежать разрушения колбы при разрыве спирали во время работы, ЛН оснащена ферроникелевым предохранителем, который обычно располагают в ее ножке. На участке разрыва тела накала образуется электродуга, из-за которой остатки спирали расплавляются, попадают на стеклянную поверхность, тогда повышается риск нарушения ее целостности. Предохранители помогают остановить процесс плавления. Однако сейчас они используются редко, так как их эффективность низкая.
svetilnik.info
особенности электрической конструкции, характеристики, принцип действия
Если сравнивать с другими источниками света, лампа накаливания является очень простой конструкцией. Генерация светового потока происходит с помощью вольфрамовой нити, которая располагается внутри вакуумной стеклянной колбы. Для увеличения эксплуатационного срока в нее начали добавлять смесь специальных газов. Это стало началом возникновения галогеновых ламп. Первыми осветительными приборами считаются калильные конструкции.
История создания
В устройстве лампы накаливания сначала применяли не вольфрам, а совершенно другие материалы. Среди них была даже бумага и бамбук. Сейчас все лавры принадлежат Эдисону и Лодыгину. Они изобрели и усовершенствовали электрические лампы. Но всё же все заслуги приписывать им будет не совсем правильно.
Учёные прилагали усилия в таких направлениях:
- Дальше изобретатели думали над тем, как выкачать весь воздух из колбы. Это было необходимо, потому что кислород является важнейшим веществом при горении. Поэтому необходимо, чтобы был вакуум (отсутствовал воздух).
- Далее нужно было придумать разъёмные и контактные элементы цепи. Задача была довольно трудной. На это в значительной мере повлиял слой графита, который имеет очень высокое сопротивление. Исследователям пришлось прибегнуть к применению драгоценных металлов — платины и серебра. Это позволило увеличить проводимость тока, но конечная цена лампочки стала запредельной.
- Е27 — цоколь Эдисона. Такая резьба применяется и по сегодняшний день. Первые варианты соединения изделия с электрической сетью предполагали применение пайки. Сегодня такой вариант не позволил бы быстро менять лампочки. Также это соединение очень быстро распадалось, когда происходил быстрый и сильный нагрев.
На сегодняшний день популярность таких устройств очень быстро падает. Сейчас в России увеличена амплитуда напряжение на 10%, если сравнивать с началом 2000-х годов. Это привело к тому, что лампы накаливания стали перегорать в 4 раза быстрее. Сейчас постепенно все переходят на светодиоды.
Принцип работы
Принцип работы лампы накаливания заключается в сильнейшем разогреве вольфрамовой нити. Это происходит благодаря электрическому току, проходящему через неё. Чтобы твёрдое вещество начало издавать красное свечение, его придётся разогреть до 570 градусов по Цельсию. Этот свет будет приятен для человеческого глаза, только если повысить показатель минимум в 3 раза.
Такую термоустойчивость имеют далеко не многие материалы. Из-за доступности вольфрама, его начали применять для изготовления ламп. Плавится он при температуре 3400 градусов по Цельсию. Его начали закручивать в спираль для повышения длины и площади этого изделия. Это помогает в значительной мере увеличить световое излучение.
Обычные лампочки устроены так, что главные части могут разогреваться до 2800 градусов. Работают лампы накаливания с цветовым излучением в 2000−3000 К. Это позволяет получить жёлтый спектр. Его, конечно, нельзя сопоставить с дневным, но этот цвет не оказывает пагубного влияния на зрение.
Если вольфрам попадёт в воздушную среду, то он очень быстро окислится, что приведёт к мгновенному разрушению. Именно поэтому использовали вакуумную колбу. Сейчас применяют вместо вакуума, смесь газов. На этапе экспериментов учёные ещё не знали, какой состав лучше применить. Современные изделия наполняются азотом, криптоном или же аргоном. С их помощью удалось увеличить срок эксплуатации лампы, а также повысить силу свечения. Длительность использования становится больше из-за того, что давление газов внутри колбы не даёт испаряться вольфрамовой нити, когда она нагрета.
Строение изделия
Обычные виды ламп накала состоят из стандартных элементов. Их размеры могут отличаться (самыми большими являются промышленные типы), но в целом они абсолютно одинаковые. Основные составные части конструкции:
- Колба.
- Цоколь. Он состоит из корпуса, на котором установлен изолятор и контакт.
- Вакуум или смесь газов.
- Нить накала.
- Предохранитель.
- Ножка.
- Электроды. Через них подаётся электричество на нить.
- Крючки. Предназначены для поддержания элемента накаливания.
Кроме стандартных типов конструктивных решений, есть ещё и изделия специального назначения. В них могут применяться держатели, которые заменяют цоколь. Также добавляется дополнительная стеклянная колба.
Чаще всего предохранитель делают из феррита и никеля. Он располагается в разрыве на каком-либо из выводов тока. Обычно его размещают в ножке. Делается это из-за того, что во время обрыва сети возникает электрическая дуга. Она расплавляет проводник, который попадает на стекло. В этом случае лампа может взорваться.
Колба и цоколь
Стеклянный сосуд необходим, чтобы защитить нить накаливания от воздействия кислорода, что приведёт к её разрушению. Размеры колбы выбираются исходя из скорости оседания вещества, из которого выполнен проводник.
Наиболее распространённым цоколем является модель Томаса Эдисона. Е10 — это самый маленький резьбовой контакт, который сейчас применяется. Например, он может использоваться в ёлочных гирляндах, а также в небольших фонариках.
Цоколь Е14 называют миньоном. Зачастую его используют в небольших осветительных приборах по типу бра. Также эта модель применяется в современных люстрах. Даже светодиодные лампы используют этот тип контакта.
Под этот патрон изготавливается множество видов ламп:
- грушевидная;
- каплевидная;
- зеркальная;
- шарообразная;
- свечеобразная.
Цоколь Е27 — это самый распространённый тип контакта. Его применяют для стандартных патронов, которые есть в каждом доме и любом помещении. Светодиодные светильники с таким цоколем очень сильно напоминают обычные.
Газовая среда и нить накала
В галогеновые изделия закачивают галогены. Вещество, покрывающие всю спираль накала, при нагреве постепенно испаряется. Оно вступает в реакцию с галогенами, расположенными внутри колбы. После этого начинают появляться соединения, которые снова разлагаются, что влечёт за собой возвращение вещества на нить. Это позволяет значительно увеличить температуру спирали, чтобы повысить КПД и длительность эксплуатации. Также газы позволяют сделать стеклянные ёмкости не такими большими.
Нить накала выполняется в разной форме. Предпочтение отдают исходя из специфики лампочки. Чаще всего используют проводник с круглым сечением или спираль. Очень редко применяют ленточные нити.
Современные лампы функционирует благодаря вольфраму или сплаву из осмия и вольфрама. Иногда используют биспирали и триспирали. Это возможно только благодаря повторному закручиванию. Наибольший коэффициент полезного действия наблюдается у последнего типа, потому что триспираль позволяет снизить количество теплового излучения.
Технические характеристики
Лампы накаливания имеют разную мощность, от которой зависит световая энергия. Изменения происходят не линейно. До 75 Вт светоотдача повышается, а свыше этого показателя — начинает снижаться. Основным преимуществом ламп с нитью является распределение светового излучения во все стороны в одинаковом количестве.
Такие изделия выдают пульсирующий свет. Определённые значения обычно сильно нагружают глаза. Нормальным показателем коэффициента пульсации является 10% и менее. Лампы не превышают порог в 4%. Наихудший показатель наблюдается у 40 Вт.
Среди всех изделий, которые выделяют световое излучение, лампы накаливания разогреваются больше остальных. Огромная доля электрического тока преобразуется в тепло, поэтому лампа зачастую похожа на обогреватель, а не на прибор освещения. Именно это стало причиной, что в законодательстве появился специальный пункт. Он запрещает использовать лампочки в быту, мощность которых превышает 100 Вт.
Если рассматривать излучаемый спектр, то можно увидеть, что обычные лампы содержат много красного цвета и мало синего при сравнении с естественным освещением. Но результат всё равно считается довольно приемлемым, так как он не становится причиной утомления глаз.
Для правильного использования осветительных приборов нужно знать условия их применения. Предельные температурные показатели составляют -60 и +50 градусов по Цельсию. Максимальная влажность — 98%. Такие устройства могут работать в паре с диммерами. Они необходимы, чтобы изменять светоотдачу путём регулирования интенсивности света. Эти изделия являются довольно дешёвыми. Также их очень просто заменить даже человеку, не имеющему никакой квалификации.
Коэффициент полезного действия
В результате применения электрического тока для работы ламп с нитью накаливания образуется не только тепловая энергия и видимый для человеческих органов зрения свет, но и инфракрасный свет, который не видят глаза. При температуре вольфрамовой нити в 3350 К коэффициент полезного действия лампочки составляет 15%. Если взять обычное изделие в 60 Вт при температуре 2800 К, то такое устройство будет выдавать минимальный КПД — 5%.
Чем сильнее разогрет проводник, тем выше будет коэффициент полезного действия. Но при большом нагреве вольфрамовой нити заметно снижается срок эксплуатации. Например, если температура лампы составляет 2800 К, то она будет работать около 1000 часов, а если 3400 К, то в несколько раз меньше. Можно увеличить напряжение на 20%, чтобы повысить выделение световой энергии в 2 раза. Но это будет не очень рационально, так как срок эксплуатации уменьшится на 95%.
Увеличение срока эксплуатации
Об увеличении срока эксплуатации обычных ламп хотят узнать побольше практически всё, кто ещё не перешёл на более современное светодиодное освещение. Это важно, так как иногда лампочка может перегореть даже при первом включении.
Существует несколько причин, из-за которых может значительно снизиться срок использования этих устройств. Вот основные из них:
- Частые скачки напряжения в электрической сети. Слишком большая нагрузка уменьшает время эксплуатации.
- Механические вибрации.
- Замыкания или разрыв цепи в проводке квартиры.
- Слишком большая температура окружающей среды.
Нужно придерживаться рекомендаций, чтобы лампочка проработала более длительный срок. Даже выполнение самых общих указаний может значительно продлить срок эксплуатации. Основные советы:
- Выбирать следует только те изделия, которые полностью подходят для рабочего диапазона напряжений электрической сети.
- Вкручивать и выкручивать лампочку можно только тогда, когда выключатель находится в выключенном состоянии. Это обусловлено тем, что даже самые незначительные вибрации способны вывести источник освещения из строя.
- Если лампы всё время перегорают только в одном и том же месте, то следует заменить патрон или починить его.
- Когда эксплуатация происходит в подъезде на лестничной площадке, следует к электрической цепи добавить диод для выпрямления напряжения. Необходимо параллельно подключить две лампы, имеющие одинаковую мощность.
- К выключателю можно подсоединить устройство, которое будет плавно увеличивать подачу тока на лампу во время включения.
Технологии постоянно развиваются. Сейчас всё большую популярность набирают экономичные люминесцентные и светодиодные лампы. Основными причинами продолжения производства ламп накаливания являются налаженное производство и наличие слаборазвитых стран, если смотреть с технологической точки зрения. Также они имеют очень мягкий и комфортный свет.
rusenergetics.ru
виды, характеристики, устройство лампы, строение, принцип работы
ЛН полюбились многим людям за счет легкости в использовании. Они имеют различные цветовые режимы, как холодные оттенки, так и теплые. В этой статье говорится о том, что такое лампа накаливания, где чаще применяется и из чего состоит.
Достоинства и недостатки
В настоящее время существует множество осветительных приборов. Большинство из них производятся в последние несколько лет с использованием высоких технологий, но классическая ЛН всё равно имеет множество плюсов или совокупность параметров, которые будут более подходящими при правильном использовании:
- достаточно низкая цена;
- устойчивость к различным температурам;
- моментальное зажигание;
- не мерцают;
- имеют разные режима света.
Как выглядит классическая ЛН
Но, к сожалению, лампы накаливания имеют свои минусы:
- основной недостаток — это достаточно пониженный КПД. У лампочек в 100 Вт КПД будет примерно 17 %, у изделий 60 Вт эта цифра будет всего лишь 5 %. Одним из методов увеличения КПД будет поднятие температуры накала, но в таком случае срок службы заметно снизится;
Спираль для лампы накаливания
- малый срок службы;
- повышенная температура поверхности сосуда, которая может быть у 100Вт лампочки до 250°С. Это повышает риск возникновения возгораний или взрыва ламп;
- чувствительность к окружающей среде;
- применение термостойкой арматуры.
Ниже подробно описаны виды и характеристики ламп накаливания.
Характеристики
Одним из основных параметров лампочек с телом накала будет мощность, указываемая в ваттах. Назначение ламп различное, поэтому диапазон выбора большой — от 0,1 Вт «светильник» до 23 тыс. Вт прожекторов для аэродромов.
В быту применяют слабомощные лампочки, обычно от 15 Вт до 200 Вт, а на производстве используют лампы мощностью до 2000 Вт.
Качество светового луча и уровень рассеивания регулируются материалом производства сосуда.
Автомобильная лампочка
Наибольшая светопередача присуща для изделий с прозрачным стеклом, потому что они не поглощают свет. Матовая поверхность лампы поглощает 5% световых лучей, а белая — 15%.
Размер лампочек накаливания может быть от 60 мм до 130 мм. Зависит от сферы применения.
Принцип работы
Во время прохождения электрическим током через спираль, она быстро раскаливается до высоких температур почти до 2500 градусов. Это происходит из-за того, что спираль обладает высоким сопротивлением току и на прохождение его уходит большое количество энергии.
Тепло нагревает металл (вольфрам), и начинается свечение лампы. Поскольку внутри лампы нет кислорода, то вольфрам не окисляется.
Таблица температуры цвета
КПД лампы накаливания 100 Вт старого образца, где роль тела накала играл стержень из угля, был намного меньше, чем у последних моделей. Это объясняется дополнительными расходами на конвекцию. Спиральные тела накала обладают более пониженным процентом таких потерь.
Температура лампы накаливания
Температура ламп накаливания может быть до 3200 градусов по Цельсию.
Обратите внимание! Температура, при которой вольфрам начинает плавиться, будет 3500 градусов. Стандартная температура ЛН не может привести в действие этот процесс. В случае, вольфрам начинает плавиться, то лампочка может взорваться, поэтому необходимо следить за этим.
Виды ламп
Лампы накаливания подразделяются на несколько видов:
Декоративные модели лампочек
- вакуумные;
- аргоновые либо азотно-аргоновые;
- криптоновые;
- галогенные с подключенным отражателем инфракрасного света внутри лампочки, что повышает КПД;
- с покрытием, необходимым для преобразования инфракрасного света в видимый спектр.
Общего, местного предназначения
Характеристики ЛН общего предназначения прописаны в ГОСТе 2239-79. Эти лампочки используются для подключения в светильники основного освещения бытовых и общественных мест, а также уличного пространства.
Основное напряжение может быть 127 и 220 В. Ассортимент изделий делится на группы в зависимости от типов тела накала (спираль либо биспираль) и среды (вакуумные, газовые).
Правильное хранение изделия
Форма сосуда, метод установки, марка изделия и вид цоколя подбираются из соображений стоимости, практичности технологи, минимум на 100 часов работы. Нужно подчеркнуть, что в последние годы эффективность таких ламп оценивается по множеству характеристик.
ЛН местного предназначения, выпускается под ГОСТом 1182-78, напряжение не должно быть выше 36 В, а для производственных помещений, где есть легкогорючие вещества — 12 В. Мощность лампочек местного назначения ограничена и будет 15, 25, 40 и 60 Вт. Время службы каждой лампы накаливания должен быть не меньше 75% средней продолжительности свечения.
Для уличного освещения берутся более мощные лампы, чтобы не приходилось каждый месяц-два менять их. Так как это достаточно трудоемкий процесс.
Иллюминационные лампы на 15 Вт
Декоративные
Декоративные лампочки могут быть различных форм, круглые, овальные, спиральные и так далее. Источником излучения будет вольфрамовая нить. С помощью него в помещении получается уютный и теплый свет. В основном на фабрике производят дизайнерские изделия под классический цоколь Е27, но бывают модели под цоколь Е22 и Е40.
Напряжение необходимое для корректной работы составляет 220 В. Срок использования декоративных изделий с вольфрамовой нитью может быть в диапазоне 2000-3400 часов, но не больше. Температура освещения характеризуется параметром 2700 К.
Такие изделия часто используют для украшения помещений, лестничных пролетов или новогодних елок. Большие торговые центры используют декоративные лампочки подвешенные к высокими потолкам. Выглядит это поистине красиво и в то же время уютно. Они будут гармонично сочетать со стилем Лофт в доме или квартире.
Иллюминационные
Эти лампы накаливания производятся с цветным внутренним слоем колбы и необходимы для новогодних гирлянд или подсветки лестниц, магазинов и витрин. Имеет большой спектр цветности, присутствуют холодные, белые, дневные и ночные оттенки. Достаточно высокий срок службы до 25000 часов, при правильной эксплуатации. Основным минусом будет тяжелая установка. Чем ближе конец срока изделия, тем слабее оно будет работать. Свет начнет плохо рассеиваться.
Передние огни самолета
Сигнальные
Сигнальные лампочки в основном используются в разной промышленности. Простота устройства и большой модельный ряд помогают выбрать изделия для работы в разных сферах производства. Лампы можно монтировать на станки, пульт управления, на специальный транспорт и так далее. Очень часто используются в машиностроении, деревообработке или металлургии.
Внимание! Можно подключить одну лампочку для выполнения нескольких операций, либо применять одновременно 2-3 изделия различного предназначения. Исходя из сферы использования, выбирается цвет и форма лампы.
Современные лампы накаливания производятся специально для использования в промышленных целях, что дает рядом плюсов перед обычными лампами световой сигнализации:
Лампа зеркальная r65
- разнообразные цветовые режимы, дающие более информативную сигнализацию;
- множество выборов плафонов;
- подходят под любую электросеть;
- легкая установка на станки при помощи системы винтового подсоединения;
- возможность заменять контакты;
- применение светодиодных лампочек повышенной яркости для улучшения обзора на любых промышленных территориях;
- удобный корпус с возможностью подбора нужного размера;
- энергосбережение;
- легкость в использовании.
Зеркальные
Изделие зеркального типа отличается от других ЛН редкой формой колбы, а также наличием покрытия с отражением света, которое похоже на тонкую фольгу.
Из чего состоит лампочка накаливания
Это покрытие распыляется на лампу для того, чтобы рассеять ее световое излучение в помещении, чтобы более правильно распределить его в пределах определенной точки, чтобы была возможность четко осветить определенное помещение.
Чтобы получить такую опция в обычной лампе, необходимо поставить позади нее большой отражатель света.
Зеркальные лампочки в основном подключают в светильники направленного излучения, используемые для точечного освещения магазинов, чтобы получилась подсветка необходимых зон. Также их используют для офисов, лестниц, памятников архитектуры.
Зеркальные лампы могут быть разноцветными и прозрачными, матовыми, либо с эффектом УФ лучей. Их производят все известные фабрики осветительных приборов.
Виды изделий
Транспортные
В качестве освещения для машин применяют транспортные лампы накаливания. В электрической цепи нить накала тела разогревается и на пике температуры начинается свечение. Энергия светового луча, воспринимаемого обычным глазом, будет небольшой. Основная масса энергии будет в виде тепла.
Транспортная лампа имеет в своем составе колбу, несколько нитей накала, цоколь и выводы.
Тела накала в двухнитевых изделиях могут работать по-разному. Двухнитевыми лампочками оснащены автомобильные фары, светильник в салоне.
Нить накала обязательно выдерживают повышенные температуры, а также достаточно маленькая. Поэтому ее производят из вольфрамовой проволоки среднего размера, завитой в вытянутую спираль.
Двухнитивые изделия
Спираль подсоединяется к электродам и в основном имеет форму прямой линии или дуги полукруга. Температура плавления вольфрама будет около 4000 градусов. Во время работы спираль греется до показателей 2500-2800 °С. С увеличением температуры вольфрама повышается яркость и световая эффективность лучей на ЛН. Но если показатели перевалили за 2500 °С вольфрам будет быстро испаряться и, оставаться на стенках стеклянного сосуда, из-за чего получается слой налета, который уменьшат качество освещения. Срок службы таких изделий обычно составляет от 4 месяцев до полугода. Зависит от производителя и качественности производственного сырья.
Двухнитевые
Такое изделие может быть трех видов:
Светофорные лампы
- для машин. Одна нить применяется для ближнего света, вторая — для дальнего. Если говорить о лампах для задних сигналов, то нити могут применяться для стоп-сигнала и габаритного света такие же. Дополнительный экран будет убирать лучи, которые в сигнале ближнего света могут ослепить владельцев встречных машин;
- для воздушного судна. В посадочной фаре первая нить применяется для малого освещения, вторая — для большого, но если вторая слишком долго работает, то может понадобиться охлаждение, иначе может произойти возгорание;
- для светофоров нажелезной дороге. Обе нити нужны для увеличения надежности— если сгорит одна, то будет работать другая.
Виды колб
Строение лампы накаливания
Конструкция различных типов лампочек накаливания не особо различается, но можно подчеркнуть три общих компонента, нить накаливания, стеклянная колба и электрические вводы. Они различаются конструкцией кронштейнов тела накала, видом цоколей, иногда бывают без цоколей.
Чтобы колба не деформировалась при перегреве спирали в процессе работы, лампа накаливания обустроена ферроникелевым предохранителем, он в основном располагается в ножке. В месте разрыва спирали появляется электрическая дуга, из-за которой кусочки спирали плавятся, попадают на колбу, что может повести за собой ее порчу. С помощью предохранителей этот процесс можно избежать. Но в последние 5 лет они редко применяются, так как не очень эффективны.
Аргоновая лампочка
Конструкция лампы накаливания:
- колба;
- спираль накаливания;
- электроды по двум сторонам тела;
- крючки, на которых удерживается спираль;
- ножка;
- токовый ввод;
- цоколь с изолятором;
- контакт на конце цоколя.
Колба
Стеклянная колба дает защиту спирали от пагубного воздействия воздуха, при ее деформации тело накала окисляется и быстро взрывается. Состав колбы лампы различается, она может быть наполнена вакуумом или газовой средой. Первые лампы накаливания производили с вакуумной емкостью, однако их мощность была не высокая. Для заполнения современных изделий применяется азотно-аргоновое вещество или исключительно аргон. Некоторые типы лампочек могут наполнять криптоном или ксеноном. Теплопередача лампочки зависит от молярной массы наполнителя.
Определение ЛН
Газовая середа
Газовая среда в лампе должна быть инертная. Поскольку температура спирали достигает 2500 градусов, то она может реагировать на любой газ, но только не инертный. Поэтому для заполнения чаще всего используют аргон.
Если вдруг вода попадет на горячую или работающую лампу, то она может разорваться под действием газа.
Иногда лампы наполняют ксеноном, но это будет относительно дорого стоить.
Во многих лампах газовая среда будет функцией защиты. В других благодаря электрическому разряду получается красивое цветное излучение. Оттенок будет завесить от свойств инертного газа.
Тело накала
Виды тел накала могут быть различные и зависят от функционального предназначение лампочек.
Виды источников света
Самими популярными будет из проволоки овального поперечного сечения, но иногда бывают и ленточные тела накала (состоят из металлической ленты).
Как уже было сказано, первые тела накала производили из угля. В современных ЛН используются только тела накала, изготовленные из вольфрама, реже из осмиево-вольфрамового вещества.
Чтобы уменьшить размер нити накала, ее обычно делай в виде спирали, иногда ее подвергают повторной обработке, из чего получается биспираль. Коэффициент полезного действия таких изделий выше из-за понижения теплопотерь во время конвекции.
Электротехнические параметры
Световая отдача таких изделий достаточно невысокая. Она будет самой низкой среди популярных электрических лампочек и находится в интервале от 5 до 10 лм/Вт. Повышенная яркость тела накала в сочетании с его маленькими размерами позволяет применять изделия в прожекторах.
Классические цоколя
ЛН имеют обширный диапазон средних напряжений и мощностей. Этот тип изделий может функционировать в большом диапазоне окружающих температур, который ограничен только термоустойчивостью сырья, применяемого при ее производстве (-100…+350 градусов). Световое излучение ЛН корректируется трансформацией рабочего напряжения.
При данном минусе будет повышенная рабочая температура и число выделяемого при горении тепла. Поскольку температура лампочек высокая, то они становятся язвимы под действием воды или резкого передача градусов (из минус в плюс и наоборот).
В современном мире многие уже давно отказались от использования ламп накаливания. В развитых городах, всего 20% людей используют такие изделия. Все переходят на галогеновые светильники.
Во время включения лампочки, тело накала находится при нормальной температуре, то сопротивление изделия будет намного меньше рабочего сопротивления. Во время включения, проходит большое количество тока. По мере раскалывания нити её сопротивление повышается, а ток понижается.
Процесс изготовления на фабрике
В отличие от новейших изделий, более старые модели ламп накаливания с угольными спиралями при включении имели обратный процесс с увеличением тока. Возрастающая функция сопротивления тела накала разрешала применение лампы в роли примитивного электростабилизатора.
Цоколь
Тип цоколя с резьбой для классической лампы накаливания был разработан Джозефом Уилсоном Суоном. Размеры цоколей имели свои стандарты. У изделий обычного типа (для дома) был цоколь E14, E27.
Иногда бывают цоколи без резьбы (в этом случае лампочка держится с помощью трения), а также бесцокольные светильники, чаще используются в машинах. Редким будет размер Е40, он применяется для более мощных изделий от 500 ВТ.
Срок годности
Срок службы изделия зависит от его качества. ЛН нужно хранить в картонной коробке. Это нужно для того, чтобы случайно не разбить ее или чтобы она не дала незаметную трещину, которая испортит всю работу. Из-за такой трещины газ будет испаряться, в итоге после того, как лампочка будет вкручена в плафон, она поработает не больше 2-3 часов. Нужно соблюдать правила безопасности при вкручивании лампы в плафон. Нельзя допускать детей к этому процессу, а также желательно полностью выключать подачу электричества в помещении.
Обратите внимание! Использованные лампочки необходимо правильно утилизироваться, выкидывать вместе с пищевыми отходами их не разрешается. В каждом городе есть специальные баки, для таких отходов.
Если соблюдать все правила хранения и использования, то лампа прослужит максимально долго, без дефектов.
Винтажная лампа Эдисона
Устройство лампы накаливания
Основные детали, из которых состоит конструкция ЛН это-цоколь, сосуд, электроды, держатели для ниток накаливания, тело накаливания, контакты и изоляция. На рисунке 10 можно увидеть строение лампочки.
Перед покупкой лампы желательно получить консультацию специалиста. Не рекомендуется отдавать выбор неизвестному производителю, так как могут попасться бракованные изделия, которые не будут работать положенный срок, или вообще разорвутся под напряжением. Качественные производители всегда дают гарантию не менее 30 дней на лампы накаливания. Покупатель имеет полное право обмена изделия или возврата средств, если работа лампы была менее 10 часов или она перегорела моментально.
В заключении нужно отметить, что лампы накаливания уже давно перестали быть популярными среди людей. Однако необходимо подчеркнуть, что среди таких изделий есть огромный выбор, для машин, уличного освещения, самолетов и так далее. К сожалению, ЛН нельзя использовать вблизи изделий, изготовленных из дерева. Так как иногда бывает сильный нагрев и разрыв спирали, из-за чего может возникнуть чрезвычайная ситуация.
rusenergetics.ru
Устройство лампы накаливания | Сайт электрика
Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство лампы накаливания. Но для начала хотелось бы сказать пару слов об истории этой лампы.
Самую первую лампочку накаливания придумал английский учёный Деларю ещё в 1840 году. Она была с платиновой спиралью. Немного позже, в 1854 году, немецкий учёный Генрих Гёбель представил лампу с бамбуковой нитью, которая находилась в вакуумной колбе. В то время ещё очень много было представленных различных ламп, различными учёными. Но все они имели очень короткий срок службы, и были не эффективными.
В 1890 году учёный Лодыгин А. Н. впервые представил лампу, у которой нить накаливания была из вольфрама, и имела вид спирали. Так же этот учёный делал попытки откачивания из колбы воздуха, и заполнение её газами. Что значительно увеличивало срок службы ламп.
А вот серийное производство ламп накаливания началось уже в 20 веке. Тогда это был реальный прорыв в технологии. Сейчас же, в наше время, многие предприятия, и просто обычные люди отказываются от этих ламп из-за того, что они много потребляют электроэнергии. А в некоторых странах даже запретили выпускать лампы накаливания, мощностью которых более 60 Ватт.
Устройство лампы накаливания.
Такая лампа состоит из следующих деталей: цоколь, колба, электроды, крючки для держания нити накаливания, нить накаливания, штенгель, изолирующий материал, контактная поверхность.
Для того, чтобы вам было более понятно, я сейчас напишу про каждую деталь отдельно. Так же смотрите рисунок и видео.
Колба – изготавливается из обычного стекла и нужна для защиты нити накаливания от внешней среды. В неё вставляется штенгель с электродами и крючками, которые держат саму нить. В колбе специально создаётся вакуум, или она заполняется специальным газом. Обычно это аргон, так как он не поддается нагреванию.
С той стороны, где находятся вывода электродов, колба заплавляется стеклом и приклеивается к цоколю.
Цоколь нужен для того, чтобы лампочку можно было вкрутить в патрон. Обычно он изготовляется из алюминия.
Нить накаливания – деталь, которая излучает свет. Изготавливается в основном из вольфрама.
А теперь для закрепления своих знаний, предлагаю вам посмотреть очень интересное видео, в котором рассказывается, и показывается, как делаются лампы накаливания.
Принцип действия.
Принцип действия лампы накаливание основывается на нагревании материала. Ведь не зря нить накаливания имеет такое название. Если пропустить через лампочку электрический ток, то вольфрамовая нить накаляется до очень высокой температуры и начинает излучать световой поток.
Не расплавляется нить, потому что вольфрам имеет очень высокую температуру плавления, где-то 3200—3400 градусов Цельсия. А при работе лампы нить накаляется где-то до 2600—3000 градусов Цельсия.
Преимущества и недостатки ламп накаливания.
Основные преимущества:
Не высокая цена.
Небольшие габариты.
Легко переносят перепады напряжения в сети.
При включении мгновенно зажигается.
Для человеческого глаза практически незаметно мерцание при работе от источника переменного тока.
Можно использовать устройство для регулировки яркости.
Можно использовать как при низких, так и при высоких температурах окружающей среды.
Такие лампы можно выпускать практически на любое напряжение.
В своём составе не содержит опасных веществ, и поэтому не нуждается в специальной утилизации.
Для зажигания лампы не нужно никаких устройств запуска.
Может работать на переменном и на постоянном напряжении.
Работает очень тихо и не создаёт радиопомех.
И это далеко не полный список преимуществ.
Недостатки:
Имеет очень маленький срок службы.
Очень маленький КПД. Обычно он не превышает 5 процентов.
Световой поток и срок службы напрямую зависит от напряжения сети.
Корпус лампы при работе очень сильно нагревается. Поэтому такая лампа считается пожароопасной.
При разрыве нити колба может взорваться.
Очень хрупкая, и чувствительная к ударам.
В условиях вибрации очень быстро выходит со строя.
И в заключение статьи хотелось бы написать об одном удивительном факте. В США в одной из пожарных частей города Ливермор, есть лампа мощностью 60 ватт, которая светиться беспрерывно уже более 100 лет. Её зажгли ещё в 1901 году, а в 1972 году её занесли в Книгу рекордов Гинесса.
Секрет её долговечности в том, что она работает в глубоком недокале. Кстати, работу этой лампы беспрерывно фиксирует вебкамера. Так что кому интересно можете поискать прямую трансляцию в интернете.
На этом у меня всё. Если статья была вам полезной, то поделитесь неё со своими друзьями в социальных сетях и подписывайтесь на обновления. Пока.
С уважением Александр!
Читайте также статьи:
fazanet.ru
способы сборки и конструктивные элементы
По сравнению с обычными лампами накаливания устройство светодиодной лампы с технической точки зрения сложнее. Если для первых используется прозрачный стеклянный корпус, то в случае со вторыми разглядеть что-либо находящееся внутри не выйдет. Для того чтобы узнать, из чего состоит такой источник света, необходимо разобрать его на части.
Общее устройство светодиодных лампочек, независимо от производителя, практически идентичное (с небольшими отличиями). Ассортимент стандартных изделий с цоколем E14 или E27 делится на три категории — фирменные, низкосортные китайские и филаментные.
к содержанию ↑Низкокачественные китайские лампочки
При разборе фирменной лампы можно обнаружить все необходимые для надежности и долговечности конструктивные элементы. Но если заглянуть под корпус дешевого китайского изделия, то первое, чего вы не обнаружите — радиатор и драйвер.
Драйвер обычно заменяют блоком питания с неполярным конденсатором, неспособным стабилизировать ток на выходе. Устанавливают такой блок в центр платы с диодами. Если взглянуть на нее сверху, то можно увидеть диодный мост с резисторами, снизу — два конденсатора. Это позволяет существенно уменьшить стоимость и качество изделия.
Для охлаждения прибора в корпусе проделывают небольшие отверстия. Эффективность низкая, кристаллы очень быстро перегорают. Плата установлена на пластиковом корпусе и закреплена защелками. Для соединения с цоколем используют два спаянных провода.
к содержанию ↑Филаментные лампы
Филаментный источник света внешне напоминает лампу накаливания, но конструктивно остается светодиодным изделием. В таком случае пропадает необходимость в отводе тепла, но применение устройств в бытовой сфере связано с исключительно эстетическими соображениями.
Основной элемент филаментного прибора — светодиодная нить. В зависимости от количества таких нитей производят изделия разной мощности. Филамент — тонкий стержень из стекла, на поверхности которого имеются SMD-диоды. Верхняя часть покрывается люминофором, дающим желтый оттенок. Для отвода тепла применяют стеклянную колбу, внутренняя часть которой заполняется газом.
Из-за отсутствия места для драйвера внутри производители размещают низкокачественный модуль питания. Это повышает пульсацию, негативно сказывающуюся на зрительных органах. Для избавления от мерцания между цоколем и колбой добавляется пластиковое кольцо с качественным драйвером.
к содержанию ↑Принцип действия светодиодных ламп
Принцип работы этих приборов построен на сложных физических процессах. При подаче электрического тока происходит соприкосновение двух веществ, изготовленных из разносортных материалов. Это приводит к образованию светового потока.
Парадоксальность системы связана с тем, что ни один из материалов, используемых для изготовления двух веществ, не относится к проводникам электрического тока. Это полупроводники, способные пропускать ток только в одном направлении. Поэтому при подключении светодиодов важно соблюдать полярность. Один материал наделен отрицательными электронами, а другой — положительными ионами.
Также в полупроводниках активизируются иные процессы. В момент смены состояния выделяется тепловая энергия. Экспериментальным методом изобретатели нашли нужное сочетание веществ, при котором помимо энергии появляется и световое излучение.
Все приборы, которые пропускают ток в одном направлении, называются диодами. Светодиоды — диоды, способные выделять световой поток.
Первые LED-диоды излучали свет в узком спектре — красном, желтом или зеленом. При этом сила свечения была минимальной. В течение продолжительного отрезка времени светодиоды использовались исключительно как индикаторы. Сегодня диапазон излучения значительно расширен и охватывает едва ли не весь спектр. С другой стороны, определенные волны всегда длиннее, поэтому данные устройства делятся на источники холодного и теплого света (в зависимости от тепловой температуры).
к содержанию ↑Способы сборки
По способу сборки изделия делятся на несколько категорий.
DIP
DIP расшифровывается как Dual In-line Package. Конструкция приборов интересна, но существенно устарела. Выделяют следующие размеры светодиодов:
Также полупроводниковые изделия различаются цветом, материалом изготовления, формой чипа. Из преимуществ DIP-сборки выделим малый нагрев и высокую яркость. Бывают одноцветные и многоцветные (RGB-технология). Можно распознать по характерной цилиндрической форме и встроенной линзе выпуклого типа.
к содержанию ↑«Пиранья»
Данная группа осветительных устройств характеризуется высоким световым потоком. Изготавливаются прямоугольной формы, имеют четыре PIN-вывода, бывают красными, синими, белыми или зелеными.
По сравнению с DIP-технологией изделия более жестко и прочно «сидят» на плате. Свинцовая подложка повышает теплопроводность, но в то же время понижает общую безопасность при эксплуатации. Широкая распространенность обусловлена большим диапазоном рабочих температур.
к содержанию ↑SMD-технология
SMD расшифровывается как Surface Mounting Device (в переводе с англ. — «устройство, фиксируемое на поверхности»). Эти светодиоды характеризуются мощностью в диапазоне 0,01–0,2 Вт. Главная особенность связана с наличием нескольких кристаллов (1–3), монтируемых на керамическую подложку.
Корпус покрыт люминофором. Стандартный припой используется для соединения основной платы и контактных площадок.
Из недостатков выделим низкую ремонтопригодность: если выйдет из строя хотя бы один диод, то придется заменять целую плату.
к содержанию ↑COB-технология
Последняя и наиболее надежная технология изготовления светодиодов получила название Chip On Board (COB). Полупроводники крепятся на плату без корпуса и какой-либо подложки, после чего покрываются люминофором.
к содержанию ↑Главное преимущество связано с небольшой площадью свечения при высокой мощности. Равномерное свечение изделия гарантируется высокой плотностью светодиодов и наличием люминофора. Такие светодиоды чаще применяются в наши дни.
Устройство светодиодных источников света
Светодиодный источник состоит из следующих конструктивных элементов:
- LED-диоды;
- драйверы;
- корпус;
- радиатор;
- цоколь.
Светодиоды
Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.
Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.
Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.
Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.
Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.
к содержанию ↑Драйверы
Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.
Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.
Дешевые драйверы применяют в обычных фонариках, в которых светодиоды питаются от батареек. В таком случае нет необходимости в резисторе, ограничивающем ток. Из-за этого диоды могут получать повышенный ток, что приводит к их скорому выходу из строя.
Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).
к содержанию ↑Цоколь
Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.
За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.
Корпус
В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.
к содержанию ↑Потребляя то же количество электроэнергии, изделия светят намного ярче аналогов. Обычная светодиодная лампа имеет закрытую колбу, производимую из стекла или пластика. Матовое покрытие понижает светопропускаемость, но это незначительные издержки производства.
Радиаторы
Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.
Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.
к содержанию ↑Компоновка составных частей
В зависимости от производителя, устройство и конструкция лампы разные. С другой стороны, общий принцип компоновки остается одинаковым. Сборка начинается с цоколя, куда последовательно устанавливают драйвер, радиатор, плату с LED-диодами и колбу.
Для сравнения рассмотрим устройство изделия от двух производителей.
Светодиодная лампа BBK
Цоколь изготавливается из пластика. Внутри установлен качественный драйвер. Для корпуса используется алюминий, выполняющий функции радиатора. Туда крепится плата с диодами и линза. Наличие данной линзы понижает световую отдачу прибора.
к содержанию ↑Лампа Gauss
Опять же цоколь изготовлен из пластика, имеются драйвер и алюминиевый корпус с установленной диодной платой. Конструкция гарантирует долговечность изделия.
Как проверить светодиодную лампу при покупке
Возьмите в руки светодиодную лампу и осмотрите ее внешне, чтобы убедиться в отсутствии каких-либо изъянов. Выполнить это можно только при условии применения прозрачной колбы. Для начала проверьте радиатор (он выпускается литого или наборного типа). Чем выше мощность изделия, тем объемнее должен быть радиатор. Отличным вариантом станет применение алюминиевых или керамических охладителей.
В идеале электротехнический элемент нужно покрыть термопластиком. Убедитесь, что в цоколе отсутствуют люфты и механические дефекты. Также в любом магазине есть возможность подключить лампу к электрической сети, чтобы проверить ее работоспособность. Сделав это, взгляните на излучаемый свет. Используйте фотокамеру на смартфоне, чтобы убедиться в отсутствии мерцания и пульсации. Ни в коем случае не покупайте лампу, которая мерцает при работе.
Полученной информации по устройству и принципу работы светодиодной лампы может быть недостаточно для выбора качественного осветительного прибора, характеризующегося безопасностью, надежностью и долговечностью. Также нужно учитывать другие критерии, включая характеристики и производителя, о чем подробно описано в этой статье.
Устройство светодиодной лампы: способы сборки и конструктивные элементы
220.guru
Строение лампы накаливания и применяемые в ней материалы
Дата публикации: .
Категория: Лампы.
Устройство и назначение основных частей ламп накаливания
Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.
Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)
Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.
Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.
От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.
Рисунок 2. Конструкция тела накала:
а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска
Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.
Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра
Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.
Рисунок 4. Зеркальные лампы накаливания
Применяемые в лампах накаливания материалы
Металлы
Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.
Таблица 1
Температура плавления металлов и их соединений
Металлы | T, °С | Карбиды и их смеси | T, °С | Нитриды | T, °С | Бориды | T, °С |
Вольфрам Рений Тантал Осмий Молибден Ниобий Иридий Цирконий Платина | 3410 3180 3014 3050 2620 2470 2410 1825 1769 | 4TaC + + HiC 4TaC + + ZrC HfC TaC ZrC NbC TiC WC W2C MoC VnC ScC SiC | 3927 3927 3887 | TaC + + TaN HfN TiC + + TiN TaN ZrN TiN BN | 3373 3307 3087 | HfB ZrB WB | 3067 2987 2927 |
Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).
Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.
В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.
Таблица 2
Основные физические свойства вольфрамовой нити
Температура, К | Скорость испарения, кг/(м²×с) | Удельное электрическое сопротивление, 10-6 Ом×см | Яркость кд/м² | Световая отдача, лм/Вт | Цветовая температура, К |
1000 1400 1800 2200 2600 3000 3400 | 5,32 × 10-35 2,51 × 10-23 8,81 × 10-17 1,24 × 10-12 8,41 × 10-10 9,95 × 10-8 3,47 × 10-6 | 24,93 37,19 50,05 63,48 77,49 92,04 107,02 | 0,0012 1,04 51,2 640 3640 13260 36000 | 0,0007 0,09 1,19 5,52 14,34 27,25 43,20 | 1005 1418 1823 2238 2660 3092 3522 |
Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.
Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.
Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.
Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.
Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.
Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.
Стекла
Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1. Это стекло может работать при температурах от 200 до 473 К.
Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.
Вводы
Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.
Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название «платинит». Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.
Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.
Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.
Газы
Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?
Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.
Таблица 3
Основные параметры инертных газов
Газ | Молекулярная масса | Потенциал ионизации, В | Теплопроводность, 10-2 Вт/(м×К) |
Водород Аргон Криптон Ксенон | 28,01 39,94 83,70 131,30 | 15,80 15,69 13,94 12,08 | 2,38 1,62 0,80 0,50 |
Источник: Афанасьева Е. И., Скобелев В. М., «Источники света и пускорегулирующая аппаратура: Учебник для техникумов», 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.
artillum.ru
Принцип работы люминесцентной лампы и ее устройство
Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.
Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.
При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.
Устройство люминесцентной лампы
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Устройство лампочки
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.
Схема
Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.
Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.
Схема подключения люминесцентных ламп без дросселя и стартера
В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:
- подключение с применением электромагнитного балласта и стартера;
- подключение с электронным пускорегулирующим аппаратом.
Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.
Схема подключения лампы с дросселем и стартером
Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.
Как загорается люминесцентная лампа?
Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:
- на электроды, расположенные на цокольных штырях, подаётся напряжение;
- высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
- ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
- после остывания стартерных контактов происходит их полное размыкание;
- самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
- проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
Лампы спецназначения
Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.
Блок 1
Для чего нужен дроссель в люминесцентной лампе
Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.
В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:
- 9 Вт — для стандартной энергосберегающей лампы;
- 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
- 18 w — для настольных осветительных приборов;
- 36 Вт — для люминесцентного светильника с малыми показателями мощности;
- 58 Вт — для потолочных светильников;
- 65 Вт — для многоламповых приборов потолочного типа;
- 80 Вт — для мощных осветительных приборов.
При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.
Принцип работы стартера люминесцентной лампы
Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.
Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.
Схема работы стартера
Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.
Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.
Устройство и принцип работы люминесцентного светильника
Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.
Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.
Светильник люминесцентный
Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.
Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.
Блок 2
Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.
Видео на тему
proprovoda.ru