Характеристики базальтовая минвата: технические характеристики плит теплоизоляции, применение утеплителя и цена

Содержание

технические характеристики плит теплоизоляции, применение утеплителя и цена

Среди теплоизоляторов, присутствующих в настоящее время на российском рынке, одним из самых востребованных является каменная вата. Её популярность обусловлена, главным образом, преимуществами этого материала. Она устойчива к открытому огню, монтаж материала легок и прост, ценник на каменную вату приемлемый.

Каменная вата — название группы материалов, которую составляют несколько разновидностей утеплителей. Один из них — базальтовый теплоизоляционный материал. Его технические характеристики определяются сферой его применения. Одним из главных его достоинств является экологическая безопасность. Поэтому его можно использовать при утеплении жилищ и при этом не опасаться за свое здоровье.

Вата из базальта

Этот тип утеплителя представляет собой одну из разновидностей минеральной ваты. У него есть несколько названий, под которыми он предлагается на рынке — базальтовая или каменная вата. В сравнении с другими видами минеральной ваты он обладает более высокими прочностными характеристиками. В сравнении с утеплителями на основе минерального волокна, изготавливаемой из шлаков металлургического производства, этот материал абсолютно безопасен с экологической точки зрения. Помимо этого его легко резать, а сложностей при его монтаже не возникает. Также необходимо отметить его долговечность, из-за чего цена на него завышена.

В структуре базальтовой плиты присутствуют волокна, которые представляют собой породы габбро-базальта в расплавленном виде. Они образуют тонкие волокна, которые составляет основу базальтовой ваты. По сути, это стекловолокно, только оно изготавливается не из обычного кварца, а из базальта. Появился этот уникальный утеплитель благодаря гавайцам. После очередного извержения вулкана жители островов обнаружили лаву, в которой после остывания они нашли удивительные волокна. Они отличались значительно длиной и были невероятно прочными. Позднее уникальные волокна, созданные природой, смогли повторить люди путем изобретения технологии производства базальтовых волокон.

Технология производства базальтовой плиты

Чтобы получить базальтовые волокна, берут горную породу и измельчают ее. Потом ее необходимо расплавить. Во время процесса плавления в специальной печи, куда помещается исходное сырье, температура доходит до 1500 градусов. Расплавленная масса затем поступает на специальные барабаны, где она вращается и обдувается струей воздуха. В результате получаются волокна, упругими и прочными волокна делает особый состав, который добавляется к ним. Посредством его обеспечивается связывание волокон. Далее масса нагревается до температуры 300 градусов, после чего пропускается два раза через пресс.

Технические характеристики базальтовой ваты

Базальтовая вата — уникальный материал с большим набором характеристик. О самых важных характеристиках базальтовых утеплителей мы расскажем далее.

Низкая теплопроводность

Строгой ориентации располагающиеся в базальтовой плите волокна не имеют. Их характеризует хаотичное размещение, поэтому воздушной и получается структура этого материала. Между каменными волокнами небольшой толщины присутствует множество прослоек воздуха. В результате образуется отличный теплоизолятор. Именно этим и объясняется тот факт, что у этой плиты коэффициент теплопроводности один из самых низких среди всех теплоизоляционных материалов. Этот показатель у него варьируется от 0,032 до 0,048 ватта на метр на Кельвин.

Влагопроницаемость стремится к нулю

Для этой плиты характерно такое свойство, как гидрофобность. Попадая на поверхность базальтовой ваты, вода не может проникнуть внутрь. Благодаря этому изоляционные свойства базальтовой плиты не меняются даже при постоянном воздействии влаги. А если такой же эксперимент провести с обычной минеральной ватой, то она впитает в себя большое количество воды.

Большинство знает, что намоченная минвата не будет держать тепло, поскольку вода, попадая в поры, увеличивает теплопроводность этого утеплителя. Поэтому, если у вас возникла необходимость в утеплении помещения, в котором преобладает повышенный уровень влажности, например, сауны или бани, то лучший выбор теплоизолятора — базальтовая стекловата. Если говорить об этом показателе по объему, то у такой плиты он не превышает 2%.

Отличная способность пропускать пар

Вне зависимости от своей плотности базальтовое волокно обладает таким качеством, как паропроницаемость. Содержащаяся в воздухе влага легко проникает в утеплитель, при этом образования конденсата не происходит. Для бани и сауны это крайне важно. Намокание под воздействием влаги этой плиты исключено. Таким образом, базальтовая вата отлично сохраняет тепло. Поэтому, если помещение утеплено этим материалом, то температура в нем комфортная, а уровень влажности оптимальный. Показатель паропроницаемости у базальтовой плиты составляет 0,3 мг/(м•ч•Па).

Высокая сопротивляемость огню

Если отталкиваться от тех требований, которые к материалам для теплоизоляции предъявляют пожарники, то базальтовая плита относится к группе негорючих. Однако на этом все не заканчивается. Она может стать преградой на пути открытого огня. Максимальная температура, которую в состоянии выдержать этот теплоизоляционный материал, не достигнув точки плавления, составляет 1114 С. Благодаря этому важному качеству использовать этот материал можно для изоляции приборов, работа которых происходит в условиях высоких температур.

Хорошая звукоизоляция

Если говорить об акустических свойствах этого материала, то они у него находится на довольно высоком уровне. Поэтому цена на него оправдана. Его использование для изоляции поверхности обеспечивает защиту от вертикальных звуковых волн, которые идут внутри стен. Поэтому, применяя его, можно не только утеплить здание, но и обеспечить ему защиту от внешних шумов. Материал хорошо поглощает звуковые волны, при этом уменьшает время реверберации. Это обеспечивает защиту от шума как самого помещения, которое изолировано этим теплоизоляционным материалом, так и соседних комнат.

Прочность материала

В структуре этого материала волокна базальта расположены хаотичным образом. Часть из них находится в вертикальном направлении. Этим и обеспечивается способность базальтовой ваты выдерживать значительные нагрузки. Так, при величине деформации в 10% этот материал имеет предел прочности на сжатие, который варьируется от 5 до 80 килопаскалей. От плотности, которые присущи этому материалу, во многом зависит значение этого показателя. Благодаря этому качеству можно быть уверенным в длительном сроке службы этого материала без изменения своих размеров и формы, хотя цена него довольно высока.

Биологическая и химическая активность — низкие

Базальтовая вата является химически инертным материалом. В этом состоит одно из важных его достоинств. Если изолировать этим утеплителем металлические конструкции, то это исключает появление на них ржавчины. Спокойно этот материал относится и к агрессивным биологическим средам. Процессам гниения и плесени он не подвержен.

Не поражается он и вредными микроорганизмами. Даже при нашествии в жилище мышей можно не сомневаться в том, что они не заведут гнездышко в этом утеплителе. А все потому, что грызунам каменная вата не по зубам. Так как этот материал обладает высокой стойкостью к воздействию агрессивных веществ, то его часто используют для изоляции технических сооружений, работа которых осуществляется в сложных условиях.

Безопасность в норме

Минералы базальта выступают в качестве основного сырья для производства каменной ваты. Волокна во время технологического процесса соединяются при помощи формальдегидной смолы. Она обеспечивает материалу необходимую прочность, а помимо этого делает его плотным. Хотя и распространено мнение, что фенол — опасное вещество, но только не в этом случае. Пары этого состава не проникают на поверхность утеплителя. Даже во время технологического процесса испарения этого вещества крайне низкие. Они находятся на уровне, меньше допустимого — 0,05 миллиграмма на м2/час.

Где используют базальтовые утеплители?

Материал имеет самое широкое применение:

  • его можно использовать при строительстве различных конструкций;
  • при устройстве кровли этот материал применяется для её теплоизоляции;
  • также им изолируют перекрытия и перегородки в строениях;
  • стены не обходятся без утепления этим материалом.

Наиболее выгодно применять его:

  • в помещениях, в которых преобладает высокий уровень влажности;
  • для утепления фасадов, а также фасадных систем;
  • для теплоизоляции стен из МДФ-панелей;
  • выполнять работы по теплоизоляции трубопроводов различного диаметра и условий эксплуатации.

Минусы базальтового утеплителя

Как у любого другого теплоизолятора, у базальтовых утеплителей имеются как свои плюсы, так и недостатки. О преимуществах мы уже поговорили. Теперь стоит сказать о недостатках этого материала.

  • Цена — самый серьезный минус базальтовых утеплителей. По карману этот материал не каждому. Хотя он и натуральный, и достаточно прочный. Если вы решительно настроены на выполнение утепление таким теплоизолятором, сразу нужно готовиться к большим финансовым затратам.
  • При проведении работ с использованием базальтовых утеплителей от них могут открываться небольшие кусочки. Это приводит к тому, что в воздух поднимается столб базальтовой пыли. Вдыхать ее — не слишком приятное занятие. Это точно положительно не отразится на вашем здоровье. Поэтому при проведении работ в качестве меры безопасности необходимо одевать респиратор.
  • Хотя базальтовые утеплители обладают высокой паропроницаемостью, но использование его в некоторых случаях является нецелесообразным. Лучше выбрать другой – например, пенополистирол, цена на который выше. Каменная вата не подходит для работ по утеплению цокольного этажа или когда возникает задача по теплоизоляции фундамента дома.

Заключение

Без теплоизоляции в наши дни просто не обойтись. Чтобы в доме было тепло, необходимо наличие на стенах, крыше и иных конструкциях слоя теплоизоляции. Если требуется создать долговечную эффективную конструкцию утепления, то в этом случае лучший выбор — базальтовая вата, даже несмотря на ее высокую цену. Хотя базальтовая теплоизоляция и стоит дорого, но обладает большим набором прекрасных характеристик, которые позволяют жить в комфортной атмосфере в своем жилище и долгие годы не беспокоиться об обновлении этой теплоизоляционной конструкции.

Оцените статью: Поделитесь с друзьями!

Характеристики базальтовой и минеральной ваты 

Сегодня на современном строительном рынке можно обнаружить широкий выбор различных утеплителей. Среди этого количества самыми востребованными материалами для утепления можно считать: минеральную либо базальтовую вату. Поэтому сегодня портал Beton-Area.com поможет узнать что лучше минвата или базальтовая вата.

Базальтовая вата и ее особенности

Базальтовая вата в качестве основы имеет стекловолокно, которое производится из габбро — базальтовой породы в результате переплавки. Плита из такого материала значительно отличается от листа минеральной ваты. Но не стоит думать, что такой материал значительно лучше минеральной ваты. Оба этих материалов имеют свои плюсы и минусы.


Базальтовая вата имеет следующие технические характеристики:

  1. Итак, подобный материал не имеет в своем составе токсичных веществ. Поэтому при горении этот материал не выделяет в атмосферу едкого дыма.
  2. На утеплителе из базальтовой ваты не образуются загрязнения.
  3. Базальтовая вата не боится воздействия грибковой плесени.
  4. Подобный материал не боится высоких температур. Кроме того, материал очень легко и удобно транспортировать на абсолютно любые расстояния.

Добавить вышесказанное, нужно лишь длительным сроком эксплуатации, который при соблюдении всех установленных моментов может увеличиться на 50 лет.

Утеплитель из базальтовой ваты будет отличаться низкой степенью звукопроводности. Поэтому такой материал подойдет для звукоизоляции различных помещений. Утеплитель из базальтовой ваты считается невзрывоопасным веществом, поэтому его можно смело использовать для изоляции горячих и агрессивных сред.

Химический состав базальтового утеплителя не содержит известняковых пород и доломита. Поэтому такой материал  не представляет интереса для грызунов.

  • Базальтовая вата отличается особенным строением. Волокна этого утеплителя могут располагаться в вертикальном и горизонтальном направлении. Благодаря такому строению, подобный материал характеризуется высокой степенью жесткости.
  • Базальтовая вата обладает водоотталкивающими свойствами. Поэтому этот материал, может пропускать влагу не накапливая ее в своем составе.

Выше мы назвали все достоинства этого материала. Как видите, их существует предостаточное количество. Но не нужно забывать о недостатках базальтовой ваты. Теперь нужно назвать именно их.

Итак, к минусам можно отнести в первую очередь высокую цену материала. Другим недостатком является состав самого материала. К примеру, утеплитель на основе базальтовой ваты «Изовер» имеет большое количество швов. По этой причине могут быть  снижены  важные теплоизоляционные качества.

Другим отрицательным моментом подобного материала является высокий уровень прочности. В некотором роде использование во время производства фенольной связующей может сделать материал с экологической точки небезопасным утеплителем.

Чем отличается базальтовая вата от других утеплителей

Если рассмотреть базальтовую вату повнимательнее, то можно увидеть другие преимущества этого материала, которые существенно отличаются от преимуществ других подобных утеплителей.

Самым важным моментом является низкий уровень биологической и химической пассивности. Этот фактор выгодно отличает базальтовую вату от стекловаты и прочих подобных материалов.


Вата, которая имеет в своем составе базальт характеризуется  хорошей пластичностью. Более того, благодаря такой структуре во время монтажа материал не осыпается.

Исходя из этих характеристик следует сказать, что сырье обладает значительным объемом и имеет хорошие характеристики прочности. Поэтому такой материал выделяется повышенными теплоизоляционными качествами.

Нужно сказать, что все утеплители, которые производятся на основе минеральных веществ раздражают у человека, который с ними работает верхние слизистые пути. Поэтому работать с подобными материалами можно лишь только в специальных защитных средствах. Ведь только лишь в таком случае есть возможность обезопасить себя и всех окружающих от неприятного воздействия такого материала.

Особенности минеральной ваты

Про минеральную вату можно сказать многое. Однако сейчас нужно перечислить главные характеристики такого материала для утепления. Итак, минеральная вата отличается: низкой плотностью и сравнительно небольшим весом. Кроме того, такой материал формирует небольшую нагрузку на любую конструкцию.

Какой материал лучше всего выбрать

В первую очередь нужно сказать, что минеральная вата отличается сравнительно небольшой стоимостью. А вот стена, утепленная  базальтовым  покрытием обойдется в несколько раз дороже.

  • Минеральная вата отличается меньшим объемом. При транспортировке она занимает меньше места. Кроме того мин вата  быстро восстанавливает свою форму даже после повреждения во время сложной транспортировки.
  • Минеральная вата — это более пластичный утеплитель, который может использоваться даже на неровных поверхностях.

Если вы хотите знать ответ на вопрос, какой материал выбрать для утепления? Нужно прежде всего определить условия эксплуатации. Если вы желаете купить долговечный и экономичный вариант утеплителя, то в таком случае нужно выбрать базальтовую вату.Действительно, такой материал отличается продолжительным эксплуатационным сроком. Кроме того, базальтовую вату можно использовать для утепления абсолютно любых частей жилища. К примеру, подобным материалом утепляют: пол, стены и даже потолок.

Читайте полезный материал: Строительные материалы для внутренней отделки дома
В общем, если сравнить все характеристики обоих материалов, то можно с уверенностью сказать, что эти утеплители  имеют похожие свойства. Базальтовая вата может свободно находиться в абсолютно любых условиях. Поэтому этот утеплитель разрешается  эксплуатировать любым удобным способом. Многие люди учитывают такие характеристики, поэтому исходя из этого они отдают предпочтение именно этому утеплителю.


Другие аналоги подобного утеплителя не имеют достойной прочности и эластичности. Поэтому во время установки они могут рассыпаться. Однако работать с подобными материалами намного безопаснее с чем с базальтовой ватой, которая негативно воздействует  на дыхательные пути человека.

Технические характеристики базальтовой (каменной) ваты

Минеральный базальтовый утеплитель — ничто иное, как каменная вата. Материал заметно превосходит разновидности минеральной ваты — стекловату и шлаковату, как в отношении эксплуатационных свойств, так и по характеристикам. Утеплитель безопасен для человека, просто монтируется, отличается продолжительным сроком службы.

Как получают базальтовый утеплитель?

Процесс изготовления базальтовой ваты аналогичен процессу создания материала в природных условиях. На идею разработки и внедрения технологии человека натолкнули вулканы. После их извержения на земле оставались лава, позднее преобразующаяся в прочные волокна под влиянием ветра. Именно эти волокна сегодня являются основной каменной ваты для утепления.

Так же, как и в природных условиях, базальтовые породы плавят в печи при температуре от 1500 градусов Цельсия, после чего остужают в специальных вращающихся барабанах мощной воздушной струей. Готовая базальтовая вата в зависимости от размеров представляет собой волокна с толщиной до 7 микрон и длиной до 5 см.

Для повышения прочности и упругости волокон, производитель добавляет связующие компоненты, после чего повторно нагревает материал до 300 градусов с последующим двукратным прессованием.

О свойствах минерального утеплителя

Минеральная базальтовая вата — современный, высокотехнологичный материал, представленный в разных размерах с набором качественных характеристик, отличных от других изоляторов. К ним относят:

  • низкую теплопроводность;
  • устойчивость к влаге;
  • паропроницаемость;
  • шумопоглощение;
  • пожаростойкость;
  • устойчивость к воздействию биологической и химической сред;
  • экологичность;
  • продолжительность срока службы.

Каждое из этих свойств делает утеплитель практически универсальным, а главное — практичным и безопасным.

Уровень теплопроводности на высоте

Даже самый бюджетный базальтовый утеплитель отличается особым расположением волокон, влияющим на структуру материала. Готовый утеплитель воздушный с многочисленными прослойками между волокнами отлично справляется с сохранением тепла. Именно этим объясняется минимальный коэффициент теплопроводности материала, который колеблется в пределах от 0,032 до 0,048 ватта на метр на Кельвин. Чтобы понимать, что это означает, можно отметить, что базальтовая вата по свойствам аналогична пробке вспененного пенополистирола или каучука.

При сравнении характеристик утеплителя на основе базальтовой ваты с характеристиками других материалов, преимущества первого становятся очевидными.

Так, например, заменить мат толщиной 10 см и плотностью 100 кг на метр кубический сможет керамическая кирпичная стена толщиной в 117 см.

Глиняный кирпич должен иметь толщину в 160 см, только в этом случае он сможет «догнать» базальтовый утеплитель в отношении способности сохранять тепло. Чтобы добиться таких же показателей от силикатного кирпича понадобится выложить стену толщиной в два метра, а деревянные конструкции должны иметь толщину не менее 25,5 сантиметров.

Стойкость к влаге — вне конкуренции

Как самая дорогая, так и более доступная по цене базальтовая вата не впитывают влагу, являясь полностью гидрофобным материалом. Попадая на утеплитель из минваты, жидкость не проникает во внутреннюю часть, тем самым не нарушает функционал.

Обычная минеральная вата таким же свойством похвастать не может. В список технических характеристик шлаковаты и стекловаты — производных минеральной ваты не входит устойчивость к влаге, поэтому материалы не допускаются для устройства теплоизоляции в помещениях с повышенной влажностью.

В то же время базальтовый утеплитель отлично выдерживает испытания влагой на протяжении всего срока службы, может использоваться для изоляции помещений бассейнов и сауны. При контакте с волокнами материала из минеральной каменной ваты, жидкость их обтекает и выходит наружу в виде пара.

Паропроницаемость — для расширения области применения

Традиционно базальтовая вата обладает отличными показателями паропроницаемости. Это свойство является одним из основных преимуществ материала для изоляции. За счет него удается свести риск образования конденсата внутри материала к нулю, что опять же важно для устройства слоя теплоизоляции в помещениях с повышенной влажностью.

Устойчивость к высоким температурам

Помимо минимальной теплопроводности в отношении технических характеристик базальтовая теплоизоляция имеет еще одно преимущество — материал способен противостоять высоким температурам и открытому огню причем с одинаковой интенсивностью как в начале срока службы, так и спустя несколько десятков лет активной эксплуатации.

Материал отвечает требованиям пожаробезопасности, относится к группе негорючих, может использоваться в помещениях с риском воспламенения. Производители каменной ваты заявляют о температуре плавления в 1114 градусов Цельсия, что значительно расширяет область применения материала.

Нужно принимать во внимание, что базальтовая теплоизоляция выпускается не всегда в соответствии с нормами. Некоторые производители, желая снизить себестоимость материала, в избытке добавляют синтетические связующие, что значительно понижает температуру плавления в некоторых случаях вплоть до 450 градусов Цельсия.

Делая выбор в пользу дешевой каменной ваты для теплоизоляции, нужно понимать, что пострадает не только способность к теплопроводности материала, снизятся и уровень его стойкости к высоким температурам.

Дополнительным преимуществом каменной ваты помимо низкой теплопроводности может считаться способность не допускать распространения открытого огня, что позволяет использовать материал для теплоизоляции оборудования, работающего при высоких температурах.

Звукопоглощение — акустика выше среднего

Такой показатель, как плотность базальтовой ваты влияет на вес материала, но не зависит от размеров и тем более не влияет на способность поглощать шум. Плиты независимо от параметров одинаково хорошо справляются с шумопоглощением, изолируя звуковые волны, независимо от типа и источника.

Отличный уровень звукопоглощения в списке технических характеристик минеральной ваты позволяет сделать заключение о возможности использования материала для звукоизоляции помещений.

Прочностные характеристики — о показателях утеплителя

Особенность теплоизоляции на основе каменной ваты — особое расположение волокон внутри в хаотичном порядке, частично в вертикальном положении. За счет этого минеральные утеплители способны справляться с ощутимыми нагрузками.

Например, в случае 10% деформации каменной ваты, изолятор демонстрирует пределы прочности на сжатие до 80 килопаскалей. На итоговые показатели влияет плотность материала. В целом же, можно отметить, что за счет особых прочностных характеристик каменной ваты, срок службы ее продлевается до 50 лет с сохранением геометрической формы, а соответственно и функционала.

Устойчивость к агрессивным средам — важный параметр

Значимая способность минеральной ваты для устройства теплоизоляции — сохранять стойкость к воздействию агрессивных сред на протяжении всего срока службы. Даже при контакте минваты с металлическими поверхностями можно не опасаться появления коррозии, равно как не стоит опасаться и появления плесени, грибка и прочих микроорганизмов, способны разрушить структуры.

Утеплители не только обладают минимальными коэффициентами теплопроводности, но и не гниют, не становятся пристанищем для размножения грызунов. Все эти свойства минеральной каменной ваты позволяют использовать ее для изоляции конструкций и сооружений, эксплуатируемых в особых условиях.

Экологичность и безопасность — вне сомнений

Как уже упоминалось, для изготовления каменной ваты используется в основном натуральное сырье в совокупности с формальдегидными смолами для связки волокон. Дополнительные компоненты нужны для улучшения прочностных характеристик, а то минимальное количество, в котором они включены в лучшие марки утеплителя из минваты, не представляет риска для здоровья.

Если сравнить каменную вату с аналогичными материалами для утепления с0 стекловатой или шлаковатой, то безопасность первой покажется еще более очевидной. Материал не колется, не раздражает кожу и слизистые, может монтироваться без использования защитных средств.

Область применения утеплителя: когда уместны плиты и маты

Теплоизоляцию на основе каменной ваты используют для утепления вертикальных и горизонтальных поверхностей, считая коэффициент теплопроводности наиболее подходящим для создания качественной изоляции.

Кроме того материал применяют для повышения звукоизоляционных свойств помещений, утепляя стены, потолок и пол, для изоляции трубопроводов, помещений и оборудования с особыми требованиями к пожаробезопасности.

Одинаково эффективной будет теплоизоляция из каменной ваты для наружной и внутренней стены дома, фундамента и перегородок, пола и кровли, мансард и чердаков. Для удобства монтажа производители предлагают использовать материал в виде:

  • плит;
  • цилиндров;
  • рулонов с оптимальными размерами.

Первые идеальны для теплоизоляции стен, пола. Матами удобно утеплять фасады, кровлю, мансарды, перегородки, цилиндрами — трубопроводы.

Технические характеристики базальтовой ваты Технониколь, Роквул, Кнауф

Базальтовая вата – это волокнистый материал, изготовленный из сырья неорганического происхождения. В процессе расплавления в него добавляется связующее вещество органического происхождения. В качестве сырья используются базальтовые горные породы (габбро, диабаз), благодаря чему образовывается базальтовая вата высочайшего качества, срок службы которой превышает 50 лет. Сферы применения материала разнообразны: утепление фасадов жилых зданий, помещений с повышенной влажностью, изоляция транспортных средств, трубопроводов, противопожарная защита конструкций.

Содержание статьи о технических характеристиках базальтовой ваты

Технические характеристики изделий на основе базальтовой ваты

1. Низкая теплопроводность.

Пористоволокнистая структура обеспечивает высокие теплоизолирующие качества материала. Теплопроводность составляет от 0,032 до 0,045 Вт./мК.

Волокна базальтовой ваты имеют небольшую длину и расположены хаотичным образом. Это обуславливает высокие механические характеристики материала – стабильность формы и прочность. Изделия из базальтовой ваты во время эксплуатации не подвергаются температурной деформации и не дают усадки.

2. Водостойкивающие свойства.

Один из главных параметров базальтовой ваты – водостойкость (при воздействии воды материал хорошо сохраняет свои свойства). Для увеличения этого показателя изделия из базальтовой ваты пропитываются специальными составами, что значительно улучшает водоотталкивающие качества. Естественно, это повышает стоимость утеплителя.  Водопоглощение по объему не более 1-5%. Естественно, эта характеристика также зависит от марки базальтовой ваты.

3. Высокая паропроницаемость.

Изделия из базальтовой ваты обладают высокой паропроницаемостью. Это объясняется тем, что материал имеет пористо-волокнистую структуру. Этот эффект важен для любых строительных конструкций, потому что теплоизоляция базальтовой ватой не препятствует движению через наружные стены пара, при этом влага не скапливается в ограждающих конструкциях. Это существенно продлевает срок службы конструкций. Паропроницаемость базальтовой ваты составляет около 0,3 мг/(м·ч·Па).

4. Негорючесть.

Изделия на основе базальтового волокна на синтетическом связующем компоненте не распространяют пламя, не дымят, малоопасные по токсичности. Базальтовое волокно не горит. Горючесть изделий определяется количеством органического компонента в составе материала. Изделия, содержащие органическое связующее менее 5%, являются негорючими. Если связующее составляет больший процент от общей массы, относится к слабогорючим материалам.

5. Прочность на сжатие. 

Также не менее важная характеристика – прочность на сжатие, что имеет решающее значение при использовании материала для утепления рулонных плоских кровель, на которые в процессе эксплуатации идут высокие сжимающие нагрузки. Негорючие жесткие плиты из базальтового волокна соответствуют необходимым требованиям к данным конструкциям. Прочность на сжатие при 10% деформации в зависимости от марки материала от 8 до 60 кПа.

Используя утеплитель из базальтовой ваты в системах фасадного типа с тонким штукатурным слоем очень важное значение имеет прочность на отрыв слоев. По стандартам Европы, этот показатель должен быть выше 15 кН/ м?. Существующим требованиям соответствует жесткая базальтовая вата.

7. Плотность.

Использование базальтовой теплоизоляции в навесных вентилируемых фасадах, на скатных кровлях следует учитывать показатель плотности материала, который должен составлять около 100 кг/м?. Это позволяет избавиться от сползания материала и выдувания волокон. Есть материалы с меньшей и высшей плотностью: от 40 до 200 кг/м?. Выбор базальтовой ваты по этой и другим характеристикам осуществляется в зависимости от использования материала.

Характеристики базальтовой ваты ведущих производителей

Вся информация о плотности, теплопроводности, прочности и других характеристиках базальтовой ваты для большей наглядности представлена в таблицах.

Базальтовая вата Технониколь

Марка Теплопроводность, Вт/м*С  Сжимаемость, % не более Паропроницаемость, мг/(м.ч.Па) не менее Водопоглощение по объему, % не более Плотность, кг/м3
РОКЛАЙТ 0,037-0,041 30  0.3 2 30-40 
ТЕХНОЛАЙТ 0,036-0,041 20  0.3 1,5  30–38 
ТЕХНОБЛОК 0.035 8 0.3 1,5  40-50 
ТЕХНОВЕНТ 0,036-0,039 2 0.3 1,5  10
ТЕХНОФЛОР ГРУНТ 0,034-0,043 8 0.3 1,5  81–99 
ТЕПЛОРОЛЛ 0,036-0,041 55 0.3 2 25-35 
ТЕХНОФАС 0,038-0,042 45 0.3 1 131–159 
ТЕХНОАКУСТИК 0,035-0,040 10 0.3 1,5  38-45 

Базальтовая вата Роквул

Марка Теплопроводность, Вт/м*С  Плотность, кг/м3 Группа горючести
ROCKMIN 0.039 26 НГ
ROCKMIN Plus 0.037 31 НГ
DOMROCK 0.045 20 НГ
SUPERROCK 0.035 35 НГ
PANELROCK 0.036 65 НГ
WENTIROCK max нижн. слой 0.036 50 НГ
WENTIROCK max верх. слой 0.036 90 НГ
ROCKTON  0.036 50 НГ

Базальтовая вата Кнауф

Материал Теплопроводность, Вт/м*С  Плотность, кг/м3 Паропроницаемость, не меньше, мг/мчПа
Nobasil LSP 0.036 35 0.55
Nobasil FKD-S 0.036 110 0.55
Insulation 0,035-0,041 50 0.55

Свойства базальтовой ваты

На строительном рынке предложена базальтовая вата различных производителей, отличающаяся высокими теплоизоляционными характеристиками, долговечностью и прочностью.

Теплоизоляционные характеристики базальтовой ваты

Базальтовые утеплители имеют низкую теплопроводность. Высокий уровень теплоизоляции предопределяется мелковолокнистой структурой. Тонкие взаимно-переплетающиеся волокна – это результат расплава базальтовых пород при чрезвычайно высоких температурах. На качество материала влияет градиент плотности в объеме и толщина волокна. При данной технологии производства возможно содержание пор и воздушных каналов до 95 % от всего объема материала. Теплопроводность неподвижного воздуха очень мала. Именно этот фактор является гарантом теплоизоляционных свойств базальтовой ваты. Она незаменима в строительстве, утеплительных работах и других областях.

Долговечность материала

Срок службы минваты составляет более 50 лет. Благодаря уникальному химическому составу материал обладает высокой устойчивостью к температурным колебаниям, негативному воздействию влаги и агрессивной химической среды. Он инертен практически ко всем строительным материалам, клеям, растворам. Повышенная поликонденсация связующих веществ делает минвату экологически чистым продуктом. Она не опасна ни для здоровья людей, ни для окружающей среды, поэтому может использоваться для теплоизоляции жилых зданий.

Уровень прочности

Базальтовый утеплитель отличают превосходные физико-механические свойства, а благодаря высокой устойчивости к нагрузкам и деформации его можно применять в многослойных системах.

Как говорилось ранее, минеральная вата – это устойчивый к воздействию повышенных температур материал. Она сохраняет свои первоначальные физические и химические характеристики при температуре до +400 С. При температуре +1090 С начинается незначительное разрушение структуры. Это значение считается порогом устойчивости материала.

Каталоги продукции и инструкции по монтажу ведущих производителей

Изовер

Каталог ISOVER ВентФасад

Каталог ISOVER Классик Плюс

Каталог ISOVER Классик

Каталог продукции ISOVER для Сауны

Каталог продукции ISOVER СкатнаяКровля

Каталог продукции ISOVER ШтукатурныйФасад

Инструкция по монтажу фасадной теплоизоляции

Каталог продукции ISOVER на основе каменного волокна

Каталог продукции ISOVER на основе стекловолокна

Утепление скатных кровель и мансард

Кнауф

Инструкция по монтажу теплоизоляции «Вентилируемый фасад»

Инструкция по монтажу системы теплоизоляции «Скатная кровля»

Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий

Натуральный утеплитель для частного домостроения, каталог продукции

Новое поколение натуральных безопасных утеплителей от Кнауф

Ursa

URSA теплоизоляция из минерального волокна

Каталог утеплителей Урса – Скатные крыши

Каталог утеплителей Урса – Плоские крыши

Каталог утеплителей Урса – Навесные вентилируемые фасады

Каталог утеплителей Урса – Полы и перекрытия

Каталог утеплителей Урса – Перегородки

Каталог утеплителей Урса – Штукатурные фасады

Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел

Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей

Каталог утеплителей Урса – Стены подвалов и фундаменты

Видео про особенности утеплителя

Минеральная базальтовая вата — характеристики утеплителя

Выбирая утеплитель, а одновременно звукоизоляцию, для потолка или стен, начинающий ремонтник может растеряться: минеральная вата или пенопласт, пеноизол или пенополиуретан? Большинство застройщиков, да и простых граждан, останавливают свой выбор на самом «теплом» материале  –вате, пусть и минеральной.

Что же это такое?

Минеральная вата по ГОСТу – это волокнистый материал на синтетическом связующем, изготавливаемый из минералов базальтовой группы. Выпуск минваты (МВ) осуществляется при температуре плавления исходного сырья около 800о С, поэтому такой утеплитель не поддерживает горения, обеспечивая пожаробезопасность.

Современную минеральную вату на синтетическом связующем можно считать натуральным материалом, потому что технологический процесс ее изготовления похож на естественный взрыв вулкана. В природе расплавленный при температуре 1500о С природный базальт в виде лавы выбрасываются с большой силой из жерла, образовывая волокнистые клубы, которые, падая на землю, охлаждаются и формируют волокна, напоминающие по внешнему виду потрепанную базальтовую минеральную вату.

На предприятиях, где производят такой утеплитель, как минеральная вата, в основном применяют базальтовые породы вместе с известняковыми камнями. После нагревания, глажки, формировки получают плиты теплоизоляционные, маты из минеральной ваты, рулонные материалы и другие типы теплоизоляционных изделий (войлок, гранулы, «сегменты», «скорлупа» и др.).

Виды минеральной ваты

Термин «минеральная вата», в зависимости от исходного сырья, включает несколько разновидностей, согласно ГОСТу «Материалы и изделия теплоизоляционные»:

  •  Стеклянная вата (стекловата), которую получают из отходов стеклянной промышленности. Такая волокнистая минеральная теплоизоляция обладает повышенной упругостью, высокой химической стойкостью, отличной прочностью. Имеет светло-желтый цвет. К недостаткам стекловаты относится повышенная ломкость волокон, которые попадая в одежду, трудно удаляются, вызывают зуд. Очень опасно вдыхание мелких, острых обломков, попадание их в глаза, поэтому работать со стекловатой нужно в плотно прилегающей спецодежде.

  • Шлаковая вата производится из расплава металлургического шлака с последующей переработкой в стекловидный волокнистый материал. Находит применение в виде готовых теплоизоляционных плит, матов прошивных из минеральной шлаковой ваты, созданных на синтетическом связующем.
  • Каменная вата – разновидность минваты, отличная звуко- и теплоизоляция, производимая из расплавленной горной породы (габбро-базальтовой группы). Базальтовая минеральная вата – экологичный материал, на 95 % состоящий из натурального камня, является негорючим и паропроницаемым, может быть любого оттенка: от коричневато-желтого до зеленоватого.

Свойства и характеристики минеральной ваты

Получаемый промышленным методом волокнистый утеплитель (минвата) по своим качествам похож на асбестовое волокно. Базальтовая минеральная вата характеризуется прочностью, высокой устойчивостью к большим температурам, к действию органических веществ (масел, щелочей), химических реактивов, она обладает прекрасными тепло- и звукоизоляционными свойствами.

Утеплитель в виде базальтовой минваты обладает превосходными водоотталкивающими свойствами. При попадании влаги на поверхность такой теплоизоляции, она не сможет проникнуть в ее толщу, поэтому МВ остается сухой, сохраняя высокие теплозащитные показатели.

Независимо от плотности или толщины минеральной ваты, она обладает высокой паропроницаемостью. Водяные пары легко проходят сквозь такую теплоизоляцию, оставляя ее сухой и не конденсируясь внутри материала.

Базальтовый утеплитель из МВ, обладая низкой теплопроводностью, гарантирует прекрасные акустические свойства: он способен улучшать воздушную звукоизоляцию помещения, снижать звуковой уровень в соседних комнатах.

При  утеплении минеральной ватой можно быть уверенным в обеспечении пожарной безопасности, благодаря тому, что базальтовый утеплитель – это негорючие вещество. Такая теплоизоляция эффективно препятствует распространению пламени, может использоваться даже в качестве огнезащиты при температурах до 1000о С.

Минеральная вата, характеристики которой позволяют использовать ее практически без ограничений, находит применение при:

·         утеплении фасадов

·         звуко- и теплоизоляции кровли

·         утеплении стен, перегородок, а также полов

·         каркасном строительстве

·         теплоизоляции трубопроводов и т. д.

При покупке «правильного» утеплителя обычно берутся во внимание множество факторов: экологичность, натуральность, цена, качество, индивидуальные предпочтения и безопасность минеральной ваты или иного материала. Выбор – за Вами!

Базальтовая вата — технические характеристики

Основой для синтеза базальтовой ваты являются расплавы горных пород. В массу могут быть добавлены элементы известняка или шихты, обеспечивающие её большую текучесть; материал в этом случае называют базальтовой минеральной ватой. Многим известно на практике, насколько хороша базальтовая вата, технические характеристики материала позволяют применять ее для различных целей.

Данный утеплитель применяется для различных строительных конструкций. Материал производится в нескольких вариантах: маты, плиты, цилиндры. Выбор зависит от целевого назначения. Наиболее удобно использовать плиты, маты обеспечивают более мягкую теплоизоляцию, но сильных нагрузок они не выносят.

Технические характеристики и преимущества базальтовой ваты

Базальтовое волокно изготавливается из естественного сырья. Это значит, что использовать данный утеплитель экологично. Многообразие значимых для эксплуатации параметров во многом является причиной широкого применения материала при теплоизоляционных работах.

К основным свойствам относятся:

  • Теплопроводность. Величина данного параметра для базальтовой ваты составляет от 0,032 до 0,048 Вт/мК. Это низкое значение. Как известно, чем ниже этот показатель, тем сильнее материал сберегает тепло. Если провести сопоставление, то 10-сантиметровый слой базальтовой ваты по своим теплоизоляционным свойствам приравнивается к кладке из кирпича толщиной 117 см.
  • Плотность материала. Для базальтовой ваты данное значение весьма вариативно, оно может составлять от 30 до 100 кг/м3. Такая величина способствует минимизации тепловых потерь. В зависимости от плотности каждый вид материала имеет свое целевое назначение. Благодаря такой многоплановости, базальтовой ватой можно утеплять как нагруженные (например, пол), так и ненагруженные элементы сооружения (крыша, чердачные помещения).
  • Виброустойчивость. Данное свойство связано с особенностями структуры волокон материала. Чем длиннее используемые волокна, тем качественнее утеплитель.
  • Устойчивость к температурным воздействиям. Базальтовая вата может применяться в расширенном диапазоне температурных перепадов, она выдерживает колебания от -270 до +9000С. Материал очень стоек даже при длительном контакте с высокими температурами.
  • Гидрофобность. Базальтовая вата не вбирает в себя воду, это обуславливает длительный срок её службы. Период эксплуатации материала достигает 70 лет. Гигроскопичность базальтовой ваты составляет менее 1%, она не подвержена деформациям при контакте с влагой, это обеспечивает её долговечность и прочность.
  • Механическая прочность. Любой утеплитель должен быть рассчитан на то, чтобы выдерживать определённые нагрузки. Не является исключением и базальтовая вата, технические характеристики её в этом отношении очень высоки. Материал имеет достаточно жёсткую структуру. Это связано с разным направлением волокон. Некоторые волокна расположены вертикально, другие – горизонтально.
  • Уровень звукоизоляции. Данный утеплитель обеспечивает надёжное поглощение ударных и воздушных шумов.

Применение материала

В настоящий момент одним из наиболее универсальных утеплителей является базальтовая вата, технические характеристики и эксплуатационные свойства наделяют её рядом несомненных достоинств.

Данный материал широко используется при обустройстве различных типов сооружений. Утеплитель характеризуется хорошей проницаемостью для паров, поэтому её применяют при обустройстве кровли, мансардной части, фасада. Материал способствует выведению водяного пара наружу.

Также базальтовая вата может быть применена под влажную штукатурку, при теплоизоляционных работах для любых видов крыш, для утепления перекрытий. Чтобы улучшить свойства материала, его снабжают стеклохолстом, а также специальной фольгой для экранирования теплового излучения.

Безопасность материала

Важно понимать, что базальтовая вата имеет природное происхождение, поэтому её применение не представляет угрозы для здоровья человека. Материал не выделяет вредных веществ сам по себе.

Однако вызывают опасения фенолформальдегидные смолы, используемые в производстве. В свободном виде это токсичные химические соединения. Тем не менее, при соблюдении технологии изготовления эти вещества находятся в связанном состоянии и не проникают в окружающую среду.

Поэтому необходимо уделять достаточное внимание выбору качественной фирмы-производителя, от этого во многом зависит удобство проживания и здоровье близких людей.

Базальтовая вата цены, базальтовый утеплитель для стен дома, толщина 50 мм и 100 мм

Базальтовый утеплитель выпускается в виде цилиндров, матов, плит. В зависимости от предназначения выбирают необходимое изделие. Самыми распространенными и удобными при проведении монтажных работ считаются базальтовые плиты. Базальтовая минеральная вата в виде матов не подходит для мест со значительными нагрузками. Она подходит для утепления труб, полов, фасада, крыши.

Наша компания предлагает купить утеплитель из базальтовой ваты толщиной 50  и 100 мм. Доступная цена доставки по Москве и Московской области. В наличии продукция от ведущих российских и европейских производителей: Роквул, Парок, Технониколь.

Виды и цены

При выборе материала большое значение имеют технические показатели: плотность, теплопроводность, коэффициент звукопоглощения, механическая прочность, химическая устойчивость. Экологичный материал не впитывает влагу и прослужит до 70 лет.

Утеплитель из базальтовой ваты

Среди современных разновидностей тепло- и звукоизоляционных материалов каменная вата используется для утепления каркасных стен, фундамента, фасада, пола, крыши жилых малоэтажных строений. Кроме того, утеплитель  успешно применяется при эксплуатации промышленного оборудования и трубопроводов больших и малых диаметров. При выборе утеплителя из базальтовой ваты рекомендуется уделять повышенное внимание не только эксплуатационным показателям изделия, но и компании-производителю.

Преимущества и особенности

  • Не впитывает влагу, не подвержена усадке;
  • Сохраняет тепло, хорошо переносит перепады температур;
  • Отличная паропроницаемость, не образует конденсата;
  • Поддерживает микроклимат внутри здания;
  • Огнестойкий и экологичный материал;
  • Демократичная цена.

Базальтовая минеральная вата отличается разнонаправленной структурой тонких, длинных, хаотично переплетающихся волокон. Маты и плиты датского бренда не впитывают влагу, не подвержены перепаду температуры и усадке. Специалисты рекомендуют их монтаж на ответственных конструкциях: строительных зданиях и сооружениях, трубо- и воздухопроводах, судостроении, промышленном оборудовании.

Отличная паропроницаемость базальтового волокна позволяет изделию хорошо сохранять тепло, не намокать и не образовывать внутри плит конденсата. В доме, изолированным таким материалом, сохраняется оптимальный режим влажности и температуры, создается оптимальный микроклимат.

Высокая сопротивляемость огню позволяет базальтовому утеплителю выдерживать очень высокую температуру. Материал признан лучшим вариантом для изоляции любых элементов конструкции, зданий и сооружений. Низкая химическая и биологическая активность, экологичность, безопасность и демократичная стоимость базальтовой ваты относится к несомненным преимуществам востребованного на отечественном рынке материала — подробнее здесь.

Basalt — обзор | Темы ScienceDirect

9.4.2 Термостойкость

Термин «термостойкость» обозначает стабильность всех свойств волокна под воздействием тепла, что означает повышение температуры. Фактически, большинство синтетических волокон из органических полимеров плавятся, горят и разлагаются при температурах до 300 ° C. По сравнению с этими синтетическими волокнами базальтовые волокна обладают высокой термостойкостью. Базальтовые волокна — это неорганические волокна, они не горят, а температура плавления составляет около 1350–1450 ° C [14].По этой причине термостойкость базальтовых волокон можно считать превосходной. Однако, если для обзора задано техническое свойство, такое как прочность волокна, даже при более низких температурах сообщается об изменении свойств волокна.

Помимо температуры плавления, в литературе также упоминаются другие температуры, которые, как утверждается, являются термическими ограничениями для использования базальтовых волокон. Обзор различных температур, найденных в литературе, показан на рис. 9.8 [15,41,42].Хорошо видно, что термическое ограничение значительно ниже температуры плавления. Упомянутая рабочая температура по данным King et al. находится при 700 ° C, что составляет лишь половину температуры плавления [15]. Сильные различия в различных температурах ограничения температуры, вероятно, вызваны двумя причинами. Во-первых, сильная вариативность в различных типах материалов из базальтового волокна. Во-вторых, вариация в приложении и параметр, важный для этого приложения.

Фиг.9.8. Обзор различных температур для базальтовых волокон в качестве теплового ограничения использования. Приведенные температуры взяты из разных источников: температура размягчения из Ref. [41], рабочая температура из работы. [15], а также другие температуры, представленные на рисунке из [15]. [42].

Однако даже воздействие более низких температур может повлиять на свойства базальтовых волокон. Даже температурное воздействие 400 ° C, нанесенное всего на 2 часа, может значительно снизить прочность базальтовых волокон [39,43].Militiky et al. сообщили даже о значительном снижении прочности базальтовых волокон, нагретых до температуры 300 ° C [32] (рис. 9.9). В этих экспериментах прочность волокна определялась при температуре нагрева и после охлаждения при комнатной температуре, как сообщили Overkamp et al. [28].

Рис. 9.9. Влияние температуры нагрева на долговечность базальтовых волокон [32].

В основном два фактора несут ответственность за снижение прочности базальтовых волокон. Во-первых, разложение нанесенных проклеивающих агентов, как описано выше.Во-вторых, процессы кристаллизации в волокне [44]. В процессе прядения базальтового волокна формируются базальтовые волокна с большим количеством аморфной поверхности для достижения наилучших механических свойств. В случае кристаллизации аморфные участки удаляются, а прочность волокна снижается.

Кристаллизация базальтовых волокон в основном определяется содержанием в них оксида железа. Предполагается, что под действием тепла начинается кристаллизация аморфных участков в присутствии оксида железа.В результате процесс кристаллизации охватывает все волокно, начиная с поверхности волокна и продвигаясь внутрь волокна [45].

Влияние оксида железа связано с процессами окисления, происходящими при более высоких температурах. Оксид железа (II) (FeO) окисляется до оксида железа (III) (Fe 2 O 3 ). Вероятно, поэтому кристаллизация базальтовых волокон начинается с поверхности базальтовых волокон, где кислород воздуха присутствует в качестве окислителя [26].Помимо окисления до Fe 2 O 3 , образование магнетита (Fe 3 O 4 ) также считается частью процесса кристаллизации базальтовых волокон [43].

Одним из основных применений базальтовых волокон является их использование в армированных волокнами композитных материалах. Таким образом, логично обсудить термическую стабильность базальтовых волокон в таких композитах. Соответствующее исследование, в котором сравниваются различные стекловолокна и базальтовые волокна, проведено Cerny et al.[46]. Они утверждали, что в термостойкой матрице базальтовое волокно может выдерживать температуру до 550–600 ° C. Однако даже при более низкой температуре 400 ° C может происходить значительное уменьшение модуля упругости при растяжении. Это изменение характеристик при растяжении объясняется процессами кристаллизации, но также следует учитывать границу раздела волокон с матрицей [46].

9.4.3 Кислотостойкость

Кислоты могут разрушать базальтовые волокна. Воздействие соляной кислоты (HCl) приводит к выщелачиванию нескольких ионов металлов (например.g., ионы железа, магния, кремния, алюминия и кальция) с поверхности волокна. Эти выщелоченные ионы замещаются протонированием кислоты, что приводит к образованию силанольных групп Si-OH на поверхности волокна [43]. Однако также было высказано предположение, что присутствие силанольных групп также защищает волокно от дальнейшего прогрессирующего гидролиза. Пленка силанольных групп может покрывать микротрещины в волокне и тем самым восстанавливать прочность волокна [43].

Другие исследования с соляной кислотой (HCl) и серной кислотой (H 2 SO 4 ) показали, что прочность базальтовых волокон, следовательно, уменьшается в зависимости от увеличения концентрации кислоты и увеличения продолжительности кислотной обработки [28].В этом исследовании сообщается, что кислотная обработка разлагает проклеивающие вещества, присутствующие на поверхности базальтового волокна. Разумеется, удаление размера также устраняет его положительное влияние на свойства волокна [28].

Можно резюмировать, что базальтовые волокна повреждаются кислотами. Однако по сравнению с щелочными химическими веществами под действием кислот базальтовые волокна полностью не разлагаются. В целом для базальтового волокна можно предположить адекватную кислотную стабильность [47]. Однако сообщалось о другом поведении, особенно для щелочно-стойких базальтовых волокон [48].Эти специальные базальтовые волокна были обработаны в сравнительном исследовании 2 М растворами NaOH и HCl путем кипячения в течение 3 часов. Впоследствии снижение веса волокон и остаточная прочность были определены как параметры, указывающие на характеристики волокна. По обоим параметрам базальтовое волокно было больше повреждено HCl по сравнению с обработкой NaOH [48].

9.4.4 Щелочная стабильность

Щелочные химические вещества могут серьезно повредить базальтовые волокна. Причиной этого, вероятно, является чувствительность соединений оксида кремния к гидролизу в щелочных условиях [49].При прямом сравнении базальтовые волокна обрабатывали разными кислотами и щелочными растворами NaOH. Как следствие, прочность базальтового волокна после щелочной обработки дополнительно снижается по сравнению с кислотной обработкой [28].

Однако сообщалось о различном влиянии различных щелочных химикатов на стабильность базальтовых волокон [50]. Особенно сильные повреждения базальтовых волокон были получены при использовании растворов NaOH и KOH. Под воздействием этих щелочных растворов остаточная прочность базальтового волокна составляла <7% [50].Для сравнения, другие щелочные растворы, содержащие Ca (OH) 2 или аммиак, не повреждают базальтовые волокна так сильно [50]. Тем не менее, базальтовые волокна обладают лучшей устойчивостью к щелочам, чем обычные стекловолокна, даже если оба они неорганические и в основном на основе оксида кремния. Вероятно, присутствие глинозема определенным образом стабилизирует базальтовые волокна [50].

Выбор химического состава и сырья для производства базальтовой ваты с заданными характеристиками

[1] О.Татаринцева С. Зависимость вязкости базальтовых расплавов от химического состава исходных минералов // Стекло и керамика. 10 (2011) 11-14.

[2] В.А. Дерибин., Н. Шардаков, Физико-химические свойства стекол: Методические указания к лабораторным работам по курсу, Химическая технология стекла и керамики, Екатеринбург, Уральский государственный технический университет, (2000).

[3] С.Попель, Ю.П. Никитин, С.М. Иванов, Графики для расчета поверхностного натяжения по размеру капель. Свердловск: Изд. УПИ, (1961).

[4] Л.Жукова А., Спиридонов М. Невидимов, Методы физико-химических исследований: Методические указания к лабораторным работам по курсу Методы физико-химических исследований, Екатеринбург, ФГАОУ ВПО Уральского федерального университета, (2012).

[5] М.П. Воларович, Исследование вязкости и пластичности расплавленного шлака и горных пород, Журнал физической химии, 6 (1933).

[6] ГРАММ.Волокитин Г. Технология получения минеральных волокон путем утилизации золошлаковых отходов и отходов горячего сланца, Стекло и керамика, 8 (2011) 3-5.

[7] Д.Д. Джингирс, Перспективы развития базальтовых волокон и области их применения, Строительные материалы, 10 (1979) 24-26.

[8] В.Китайцев, Технология теплоизоляционных материалов, (1964).

материалов | Бесплатный полнотекстовый | Влияние влаги на механические, морфологические и термогравиметрические свойства минеральной ваты из волокон базальтового стекла

Вклад авторов

Концептуализация, А. и S.L .; методология, Г.К. и A.I .; валидация, R.Р.; формальный анализ, A.I., G.K., and W.K .; расследование, W.K .; курирование данных, G.K и W.K .; письменная — подготовка оригинального черновика, Г.К .; визуализация, Г. и R.R .; надзор, С. Все авторы прочитали и согласились с опубликованной версией рукописи.

Рисунок 1. Схема кровельной конструкции.

Рисунок 1. Схема кровельной конструкции.

Рисунок 2. ( a ) Образцы минеральной ваты, взятые с мягкой неровной кровли коммерческого здания, расположенного в Словении, Центральная Европа.( b ) Визуальная презентация новых и деградированных образцов изоляции.

Рисунок 2. ( a ) Образцы минеральной ваты, взятые с мягкой неровной кровли коммерческого здания, расположенного в Словении, Центральная Европа. ( b ) Визуальная презентация новых и деградированных образцов изоляции.

Рисунок 3. Содержание влаги (u) при разной относительной влажности: сравнение новых и старых образцов.

Рисунок 3. Содержание влаги (u) при разной относительной влажности: сравнение новых и старых образцов.

Рисунок 4. Частичное разложение смолы деполимеризацией, инициированной гидролизом.

Рисунок 4. Частичное разложение смолы деполимеризацией, инициированной гидролизом.

Рисунок 5. Напряжение сжатия при 10% деформации.

Рисунок 5. Напряжение сжатия при 10% деформации.

Рисунок 6. СЭМ микроанализ нового ( a c ) и старого ( d f ) изоляционного материала.

Рисунок 6. СЭМ микроанализ нового ( a c ) и старого ( d f ) изоляционного материала.

Рисунок 7. SEM-EDX использовался для наблюдения за составом поверхности нового образца базальтовой ваты, покрытой связующим. Толстый белый равномерный слой, окружающий базальтовое волокно, представляет собой связующее с покрытием.

Рисунок 7. SEM-EDX использовался для наблюдения за составом поверхности нового образца базальтовой ваты, покрытой связующим. Толстый белый равномерный слой, окружающий базальтовое волокно, представляет собой связующее с покрытием.

Рисунок 8. SEM-EDX-спектры поверхности минеральной ваты, изготовленной из базальтовых волокон с двумя характерными дефектами: ( a ) трещинами и ( b ) выпуклостями.

Рисунок 8. SEM-EDX-спектры поверхности минеральной ваты, изготовленной из базальтовых волокон с двумя характерными дефектами: ( a ) трещинами и ( b ) выпуклостями.

Рисунок 9. Анализ поверхности волокна с помощью сканирующего просвечивающего электронного микроскопа в наномасштабе. Видно образование тонкого ребристого слоя на поверхности состаренного базальта ( a c ), параллельное сечение базальтового волокна ( d ) и наличие элементов на поверхности и внутри ( e ).

Рисунок 9. Анализ поверхности волокна с помощью сканирующего просвечивающего электронного микроскопа в наномасштабе. Видно образование тонкого ребристого слоя на поверхности состаренного базальта ( a c ), параллельное сечение базальтового волокна ( d ) и наличие элементов на поверхности и внутри ( e ).

Рисунок 10. Результаты анализа TGA-DSC между новыми и старыми образцами. Нормализованное изменение массы м / м o , где м и o м — изменение массы и начальная масса образца, соответственно.

Рисунок 10. Результаты анализа TGA-DSC между новыми и старыми образцами. Нормализованное изменение массы м / м o , где м и o м — изменение массы и начальная масса образца, соответственно.

Рисунок 11. Анализ TGA-DSC в области ниже 400 ° C. Нормализованное изменение массы м / м o , где м и o м — изменение массы и начальная масса образца, соответственно.

Рисунок 11. Анализ TGA-DSC в области ниже 400 ° C. Нормализованное изменение массы м / м o , где м и o м — изменение массы и начальная масса образца, соответственно.

Таблица 1. Содержание воды (u) и прочность на сжатие (σ) деградированной минеральной ваты из базальтовых волокон.

Таблица 1. Содержание воды (u) и прочность на сжатие (σ) деградированной минеральной ваты из базальтовых волокон.

Образец u мин. (мас.%) u среднее значение (мас.%) u макс. (мас.%) σ 10, мин. (кПа) σ 10, среднее значение (кПа) σ 10, макс (кПа) σ 10, дек (кПа)
Минеральная вата 0.53 0,63 4,90 2,18 5,21 10,20 70

Таблица 2. Поверхностная концентрация элементов в новом образце (эталоне), образце с трещинными дефектами и образце с дефектами выпуклости (мас.%).

Таблица 2. Поверхностная концентрация элементов в новом образце (эталоне), образце с дефектами трещины и образце с дефектами выпуклости (мас.%).

Spectrum B Na Mg Al Si K Ca Ti Fe
43 0,96 3,26 4,21 9,72 0,09 6,43 0,35 2,45
Трещины 4,22 14,11 1,04 2,78
Выпуклости 4,16 0,92 3,90 5,03 10,24 0,57 10.33 0,77 1,94

Таблица 3. Относительное количество элементов на поверхности по сравнению с Si в новых и деградированных образцах с трещинами и выпуклостями (мас.%).

Таблица 3. Относительное количество элементов на поверхности по сравнению с Si в новых и деградированных образцах с трещинами и выпуклостями (мас.%).

Соотношение B / Si Na / Si Mg / Si Al / Si K / Si Ca / Si Ti / Si Fe / Si
Эталон 0.76 0,10 0,34 0,43 0,01 0,66 0,04 0,25
Трещины 0,35 0,12 0,35 0,12 0,23
Выпуклости 0,41 0,09 0,38 0,49 0,06 1,01 0,08 0.19

(PDF) Оценка качества меланократового базальта для минерального волокна, Южный Урал, Россия

жидких фаз (богатая железом фаза) способствует образованию первой кристаллической фазы со структурой шпинели

(шпинелид). При последующей термической обработке твердый раствор клинопироксена

осаждается на кристаллы шпинели

, которые действуют как зародыши кристаллизации.

ЗАКЛЮЧЕНИЕ

Результаты, полученные в этом исследовании, показывают значительные различия в химическом, минералогическом составе и физических свойствах мелано-

кратовых, андезитовых и известково-щелочных базальтовых выходов

Кулуевский вулканический комплекс.Результаты

показывают, что меланократовый базальт

не подходит для производства тонких штапелей и CBF. Это в основном

из-за меланократового состава базальтов и

из-за интенсивного базальтового метаморфизма в фациальных средах зеленосланцевых

. Физические характеристики расплавов базальта

, особенно низкая вязкость, имеют отрицательное влияние на образование сплошных волокон. Низкий модуль кислотности

указывает на уникальную возможность

получения хрупких волокон с плохой химической стойкостью

.Огнеупорные примеси, в основном из-за

, главным образом из-за сфена, хромшпинелида и магнезиального

тита, еще больше снижают качество конечных продуктов. Тем не менее, это сырье

сохраняет приемлемые изоляционные свойства и, следовательно,

имеет большое значение в строительной отрасли.

БЛАГОДАРНОСТИ

Работа поддержана Управлением образования

Пермского края (международная исследовательская группа

«Оценка минеральной базы

Пермского края для обеспечения производства высококачественного базальтового волокна

»).Авторы хотели бы поблагодарить

анонимных рецензентов

за их ценные комментарии

и предложения по улучшению качества статьи.

СПИСОК ЛИТЕРАТУРЫ

Асланова М.С., Колесов Ю.И., Хазанов В.Е. (1979). Стекло

волокна. Москва: Химия.

Basaltfm. (2014). http://www.basaltfm.com.

Бочарова И. Н., Горбачев Г. Ф., Иваницкий

‘, С. Г. (2005).

Образование и свойства непрерывных базальтовых волокон.В издании

Proceedings of the International Science and Technology

Seminar on New Materials and Tools (pp 8–19). Киев:

Наукова думка.

Cziga

´ny, T. (2005). Гибридный полимер, армированный базальтовым волокном,

поз. Форум по материаловедению, 473–474, 59–66.

Дир, В. А., Хоуи, Р. А., и Зуссман, Дж. (1965). Породообразующие

минералов. Нью-Йорк: Academic Press.

Джигирис Д. Д., Махова М.Ф. (2002). База производства

базальтовых волокон и изделий (стр. 412). Москва: Теплоэнергетик.

Джигирис Д. Д., Волынский А. К., Козловский П. П. (1980).

Принципы технологии производства и свойства

базальтовых волокон. Композиционные материалы и конструкции из базальтового волокна

(стр. 54–81). Киев: Наукова думка.

Ферштатер, Г. Б., и Беа, Ф. (1996). Геохимическая типизация

офиолитов Урала.Геохимия, 3, 195–218.

Громков Б.К., Смирнов Л.Н., Трофимов А.Н., Жаров А.И.

(2001). Базальтоволокнистые материалы (стр. 54–64). Москва: Ин-

формконверсия.

Гутников С.И., Манылов М.С., Липатов Я. В., Лазоряк Б. И.,

, Похолок К. В. (2013). Влияние восстановительной обработки

на кристаллизационные свойства непрерывного волокна базальта.

Журнал некристаллических твердых тел, 368, 45–50.

Иваницкий С.Г., Чувашов Ю.М., Ященко О.М. (2008).

Физические свойства горных пород, расплавов и стекла. Совр. Пробл.

Физ. Материаловед, 17, 118–125.

Ходаковский М.Д. (1973). Производство стекловолокна и тканей.

Москва: Химия.

Коротеев В. А., Де Боордер Х., Нечеухин В. М., Сазонов,

В. Н. (1997). Геодинамическая обстановка месторождения полезных ископаемых

Урала. Тектонофизика, 276, 291–300.

Махова М.Ф. (1968). Кристаллизация базальтовых волокон. Стекло и

Керамика, 11, 22–23.

Militky

´, J., Kovac

ˇic

ˇ, V., & Bajzı

´k, V. (2007). Механические свойства

базальтовых волокон. Волокна и текстиль в Восточной Европе,

15, 64–65.

Militky

´, J., Kovac

ˇic

ˇ, V. & Rubnerova

´, J. (2002). Влияние термической обработки

на разрыв базальтовых волокон при растяжении.Engi-

neering Механика разрушения, 69, 1025–1033.

Осовецкий Б. М. (2001). Типохимизм шлих-минералов (с. 244).

Пермь: Издательство Пермского государственного университета.

Перевозчиков Б.В., Осовецкий Б.М., Меньшикова Е.А., &

Казымов К.П. (2012). Методика комплексного изучения габбро-базальтового сырья

для производства базальтового волокна

(стр. 199–205). Пермь: Геология и полезные ископаемые

Западного Урала, ПГНИУ.

Самаркин Г. И., Самаркина Ю. (1988). Гранитоиды Южного Урала и происхождение гранитных поясов в складчатых областях.

Москва: Наука.

Шефер, К., Фо

Эрстер, Т., Ма

Эдер, Э., Генрих, Г., Хемпель, С., и

Мехтчерин, В. (2009). Старение щелочно-стойкого стекла и базальтовых волокон

в щелочных растворах: оценка разрушающего напряжения

с помощью функции распределения Вейбулла. Journal of Non-

Crystalline Solids, 355, 2588–2595.

Трефилов В. И., Махова М. Ф., Джигирис Д. Д. (1992). Сырьевая база

для производства волокна в Украине. Промышленность

Конструкционные материалы. Сер. 6, Выпуск 2, Всесоюз. Науч. Исслед.

Инст. Науч. Тех. Поставить в известность. Эконом. Промышленл. Строит. Матер.

Москва.

Вэй Б., Цао Х. и Сун С. (2010). Устойчивость к окружающей среде и механические характеристики

базальта и стекловолокна. Материалы

Наука и техника, 527, 4708–4715.

Оценка качества меланократового базальта

% PDF-1.6 % 60 0 объект > / Метаданные 57 0 R / AcroForm 61 0 R / Страницы 54 0 R / Тип / Каталог >> эндобдж 57 0 объект > поток 2006-10-01T21: 22: 41-04: 00Acrobat Capture 3.02011-11-01T14: 07: 07-04: 002011-11-01T14: 07: 07-04: 00Adobe PDF Library 4.0application / pdfuuid: e3153674-cbcf- 4437-882d-9483b11f99e3uuid: 2e0b5dc0-37fc-4b05-8b4a-10dd9450a068 конечный поток эндобдж 61 0 объект > / Кодировка >>>>> эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 13 0 объект > / Содержание 88 0 R / Повернуть 0 / MediaBox [0 0 611.64 793.439] / Ресурсы> / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница >> эндобдж 16 0 объект > / Contents 89 0 R / Rotate 0 / MediaBox [0 0 609.119 794.88] / Resources> / Font> / ProcSet [/ PDF / Text / ImageB] >> / Type / Page >> эндобдж 19 0 объект > / Contents 90 0 R / Rotate 0 / MediaBox [0 0 609.839 794.16] / Resources> / Font> / ProcSet [/ PDF / Text / ImageB] >> / Type / Page >> эндобдж 22 0 объект > / Contents 91 0 R / Rotate 0 / MediaBox [0 0 609.839 795.24] / Resources> / Font> / ProcSet [/ PDF / Text / ImageB] >> / Type / Page >> эндобдж 25 0 объект > / Содержание 92 0 R / Повернуть 0 / MediaBox [0 0 608.039 795.24] / Ресурсы> / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница >> эндобдж 28 0 объект > / Contents 93 0 R / Rotate 0 / MediaBox [0 0 608.759 795.959] / Resources> / Font> / ProcSet [/ PDF / Text / ImageB] >> / Type / Page >> эндобдж 31 0 объект > / Contents 94 0 R / Rotate 0 / MediaBox [0 0 616.32 797.759] / Resources> / Font> / ProcSet [/ PDF / Text / ImageB] >> / Type / Page >> эндобдж 94 0 объект > поток HW] ۺ} УX +> — pn} A + ˶ndɕu7CHJN4Mď3gA d & 4q_ ~ Q% Ge ~ i7i7yv; ‘-JvED] a 50F> ޝ I7c ^ _3҄I w1z> / 7pa / USvy = m1m ~ Jj (Db7T $ A \ z.`0 | \ WhHy?»

Каменная вата | Изоляция из каменной ваты

Эффективная изоляция необходима в любом строительном и техническом сооружении для обеспечения максимального комфорта и снижения затрат. ISOVER разрабатывает, использует и совершенствует в течение многих лет, Изоляционные материалы из каменной ваты сочетают в себе механическую стойкость с отличными тепловыми характеристиками, пожаробезопасностью и пригодностью для высоких температур.

Что такое каменная вата?

Также известная как минеральная вата, каменная вата создается путем вращения расплавленной струи горной породы, шлака сталеплавильных печей и переработанных материалов.Сделанный в основном из вулканических пород, он на 70% состоит из природного сырья, включая базальт, доломит и аналогичные породы, которые обычно плавятся в вагранке с углеродсодержащим источником энергии с использованием оптимальных систем рекуперации энергии и защиты окружающей среды.

Почему стоит выбрать изоляцию из каменной ваты? Каменная вата

ISOVER сочетает в себе множество преимуществ в одном решении, включая высокие уровни механической прочности, влагостойкости, отличные тепло- и звукоизоляционные характеристики и превосходную пассивную противопожарную защиту.


Вся наша продукция из каменной ваты бывает разной толщины, специально разработанной для индивидуального применения
  • Эффективная противопожарная защита
    Каменная вата (или минеральная вата) обеспечивает отличную пассивную защиту от огня: это негорючий материал, способный выдерживать температуру выше 1000 ° C, не вызывая разжигания огня или распространения пламени.

  • Превосходное звукопоглощение
    Негорючая и легкая каменная вата обладает отличными звукоизоляционными свойствами.Каменная вата особенно полезна, когда требуются превосходная огнестойкость и акустические характеристики.

  • Высокий уровень теплоизоляции
    Крошечные карманы воздуха, заключенные в физической структуре каменной ваты, уменьшают воздушный и тепловой поток. Каменная вата сохраняет свою форму и плотность с течением времени, обеспечивая длительные тепловые характеристики на протяжении всего срока службы здания или технического объекта.

  • Экологичность
    Мы постоянно стремимся сократить использование ресурсов и выбросы, выделяемые в процессе производства и цепочки поставок.Каменная вата состоит на 50% из вторичного сырья и имеет положительный энергетический баланс и баланс CO2 через 3 месяца.

Минеральная вата — не только ее изоляционные свойства

Минеральная вата входит в четверку лучших изоляционных материалов для труб, доступных сегодня на рынке для промышленных изоляционных материалов. Благодаря широкому диапазону толщины и облицовки минеральную вату можно найти во многих областях, таких как защита труб, резервуаров, сосудов и персонала.

Известно, что минеральная вата довольно эффективно проводит тепло при прессовании в рулоны или листы. Также он может выступать в качестве отличного теплоизолятора и звукопоглотителя. В промышленных процессах существует потребность в поиске методов энергосбережения, и именно здесь проявляется истинная ценность минеральной ваты. Во многих сборных трубопроводах и фитингах, используемых в промышленных изоляционных материалах, в качестве основного изолятора используется минеральная вата.

Изоляционные преимущества минеральной ваты включают:

  • Превосходные тепловые характеристики
  • Низкое влагопоглощение
  • Отличная огнестойкость
  • Отличное звукопоглощение
  • Устойчивый к плесени

Но преимущества минеральной ваты выходят далеко за рамки ее изоляционных свойств.Поскольку минеральная вата изготовлена ​​из природного камня и шлака, она обладает исключительными энергосберегающими свойствами.

  • Включение лома: В целях сокращения отходов многие производители изоляционных материалов будут возвращать лом на начальный этап производства или перепрофилировать лом для использования в других продуктах. Благодаря усовершенствованию технологии и технологического процесса стало проще, чем когда-либо, повторно использовать лом, чтобы сократить как можно больше отходов.
  • Энергоэффективность: Растут опасения по поводу окружающей среды, а также энергоснабжения и источников энергии, которую мы используем.Использование изоляции труб из минеральной ваты может снизить потребление энергии, что, в свою очередь, позволяет экономить невозобновляемое топливо, снижает загрязнение воздуха и выбросы парниковых газов, а также обеспечивает экономию энергии.
  • Использование ресурсов: Минеральная вата состоит из смеси природных горных пород, таких как базальт, и переработанного шлака. Благодаря использованию как натуральных продуктов, так и побочных продуктов, производство минеральной ваты экономит ресурсы и помогает устранить отходы.

Если вы ищете изоляцию для труб из-за ее тепловых преимуществ или что-то более экологичное, минеральная вата применима в обоих случаях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *