Плитка керамическая коэффициент теплопроводности: Теплопроводность керамической плитки — что собой представляет – Что такое теплопроводность керамогранита, ее сравнение с другими материалами?

Производство песчанополимерной тротуарной плитки и черепицы ИП Ваганов В.В, Ижевск

Сравнение строительных материалов по теплопроводности.

НазваниеФизико-технические характеристики
Плотность, кг/куб.мТеплопроводность,Вт/м
Газобетон8000,28
Пенобетон1200038
Керамзитобетон12000,7
Кирпич20000,8
Дерево6000,17
Тротуарная | плитка9500,45

 

Плотность строительных материалов(кг/куб.м.)-физическая величина, равная отношению массы тела ко всему занимаемому им объему, включая имеющие в нем поры и пустоты.

Теплопроводность(Вт/м)-способность передавать через свою толщу тепловой поток, возникающий вследствие разности температур на поверхностях, ограничивающих ту или иную конструкции (строительный материал). Теплопроводность строительных материалов зависит от структуры, плотности и влажности.

Протокол теплопроводности.

 

Теплопроводность бетона (монолитного железобетона)

При возведении частного дома или проведении утепляющих работ необходимо ответственно подойти к вопросам покупки материалов. Чтобы уменьшить потери тепловой энергии и снизить расходы на обогрев, следует учитывать такой параметр, как теплопроводность бетона. Он определяет способность блоков пропускать тепло и считается важнейшей эксплуатационной характеристикой.

коэффициент теплопроводности бетона определение

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

какая теплопроводность у разных типов бетона

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки. Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.

Коэффициент теплопроводности

В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.

Коэффициент для различных видов монолита

Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:

  1. Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
  2. Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.
Еще коэффициент зависит от применяемых наполнителей. Так, если тяжелый бетон (2,4 т/м³) будет иметь в составе щебенку, параметр составит 1,51.

При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.

теплопроводность бетона

Факторы влияющие на коэффициент

Степень проводимости бетона любой марки определяется множеством факторов. В их числе:

  1. Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
  2. Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
  3. Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.

При выполнении расчетов нужно учитывать, что снижение влажности минимизирует проводимость тепла, из-за чего уровень теплопотерь становится невысоким.

С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.

коэффициент теплопроводности монолитного бетона

Теплопроводность и утепление зданий

Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:

  1. Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
  2. Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.

Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:

  1. Пенобетон — не больше 25 см.
  2. Керамзитобетон — до 50 см.
  3. Кирпичи — 65 см.

Как производится расчет

Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.

Она имеет следующую расшифровку:
  • R — показатель устойчивости к скачкам температуры;
  • p — толщина слоя в метрах;
  • k — Проводимость тепла монолитом.

С помощью такой формулы можно благополучно выполнить расчет с помощью простого калькулятора. Это решается путем разделения толщины на коэффициент теплопроводности.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Чем тяжелее наполняющий компонент, тем выше степень теплопроводности раствора. Тяжелый материал не сможет долго удерживать тепло, поэтому большинство построек из конструкционных материалов требуют дополнительной теплоизоляции, в большинстве случаев — снаружи.

Для таких материалов характерны следующие коэффициенты:
  1. Тяжелый — 1,2-1,5 Вт/м К.
  2. Легкий — 0,25-0,52 Вт/м К.

определение теплопроводности железобетона

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Так, кирпич керамический пустотелый обладает теплопроводностью в 0,4-0,7 Вт/(м град). Полнотелые разновидности проводят тепло в 1,5-2 раза лучше.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Таблица показателей

Таблица значений для разных материалов выглядит следующим образом:

МатериалПлотность кг/м³Теплопроводность

Вт/(м/С)

Паро-

проницаемость

Сопротивление теплопередаче
Железобетон25001.690.037.10
Бетон24001.510.036.34
Керамзитобетон18000.660.092.77
Кирпич красный18000.560.112.35
Пенобетон3000.080.260.34
Гранит28003.490.00814.6
Мрамор28002.910.00812.2

Руководствуясь сведениями из этой таблицы, можно подобрать оптимальный строительный материал для возведения надежной и защищенной от холода постройки.

Коэффициенты теплопроводности керамики кислотоупорной — Справочник химика 21

    Керамические изделия обладают низкой теплопроводностью. Теплопроводность обычной кислотоупорной керамики составляет 1,05—1,57 втЦм — град), а ее удельная теплоемкость 0,75— 0,79 кдж/(кг град). Керамика, предназначенная для изготовления теплообменной аппаратуры, может иметь коэффициент теплопроводности до 1,86 вт/ м-град). Есть указания, что изготовляется специальная керамика с теплопроводностью [c.380]
    В настоящее время выпускаются керамиковые изделия повышенной теплопроводности. Теплопроводность некоторых специальных изделий достигает 3,95 ккал м-час-град. Теплопроводность обычной кислотоупорной керамики составляет 0,9—1,35 ккал м час град, а ее удельная теплоемкость — 0,18—0,19 ккал кг-град. Керамика, предназначенная для изготовления теплообменной аппаратуры, может обладать несколько повышенным коэффициентом теплопроводности — до 1,6 ккал м час град. [c.373]

    Кислотоупорная керамика и каменныйтовар сравнительно дешевы и химически стойки, но непрочны, хрупки и обладают низкой теплопроводностью, что с появлением химически стойких сплавов ограничило их применение. Основные свойства изделия из керамики з дельный весу = 2,5ч-2,7, теплоемкость с = 0,19 к Ал//сг°С, коэффициент температурного расширения а = 4,5 X 10 — . Предел прочности при рзстяжении = 95 ч- 100 кг/см , при сжатии к.г/см . Для понижения пористости, достигающей [c.54]

    Кислотоупорная керамика характеризуется следующими свойствами плотность 2,5—2,56 г/см объёмный вес 2,1—2,3 г/см пористость по водо-поглощению 0,3—10% пределы прочности, кг1см при растяжении 50—100 сжатии-—до 5000 изгибе 100—400 огнеупорность 1500—1650° коэффициент линейного расширения — 4,3-10 теплопроводность 0,9—1,05 ккал/м-ч-град, теплоемкость 0,185—0,187 ккал// -spao кислотоупорность 92—99,8. [c.507]


Коэффициент теплопроводности — Металлы и стекло

вернуться в на страницу «Коэффициент теплопроводности»

Коэффициент теплопроводности — Металлы и стекло

Согласно: СП 50.13330.2012 Тепловая защита зданий. Приложение Т (справочное). Расчетные теплотехнические показатели строительных материалов и изделий.

МатериалХарактеристики материалов в сухом состоянииРасчетные характеристики материалов при условиях эксплуатации конструкций А и Б
плот-
ность ρ0, кг/м3
удельная тепло-
емкость С0, кДж/
(кг·°С)
тепло-
провод-
ность λ0, Вт/
(м·°С)
влажность, w, %тепло-
проводность λ, Вт/(м·°С)
тепло-
усвоение  s (при периоде 24 ч) , Вт/(м2·°С)
паро-
прони-
цаемость μ, мг/(м·ч·Па)
АБАБАБА, Б
1234567891011
Металлы и стекло
230 Сталь стержневая арматурная78500,48258005858126,5126,50
231 Чугун72000,48250005050112,5112,50
232 Алюминий26000,8422100221221187,6187,60
233 Медь85000,42407004074073263260
234 Стекло оконное25000,840,76000,760,7610,7910,790

Примечания

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *