Лампы натриевые низкого давления – что это, какие бывают натриевые лампы высокого и низкого давления, схема подключения, использование для растений

Содержание

Газоразрядные лампы:виды,принцип работы,достоинства и недостатки

Сейчас газоразрядные источники света широко распространены. Они дают освещение улицам, применяются в качестве головного света автомобилей, неоновые вывески – это тоже газоразрядные лампы. Еще они применяются для освещения дома и офисов. Видов и форм таких источников света очень много. Внешне они могут очень сильно отличаться, но их роднят физические принципы работы – разряд между электродами в герметичной колбе.

Устройство и принцип работы газоразрядных ламп.

Любая газоразрядный источник света представляет собой герметичную колбу, внутри которой расположены электроды. Между ними протекает разряд. В зависимости от модификации колба может быть разной формы. Материал зависит от предназначения осветителя. Наполнение также разнообразно.

Между электродами протекает разряд. Напряжения зажигания может быт существенно выше напряжения горения. Поэтому для запуска требуется пускатель. Он может быть примитивный в виде последовательно соединенных стартера и дросселя – катушки индуктивности. Но сейчас все чаще применяют электронный тип пуско-регулирующего аппарата – ЭПРА. Устройство его более сложное, но функции те же самые.

От формы, мощности, материалов изготовления, наличия люминофорного покрытия зависит применение газоразрядных лам. Следует заметить, что они чувствительны к температуре окружающей среды. При пониженных температурах розжиг становится более сложной задачей. Согласно ГОСТам, максимальное время запуска не должно превышать десяти секунд.

Область применения ГРЛ.

ГРЛ – общепринятая аббревиатура, означает газоразрядные лампы.

Все они имеют общие физические принципы, их применение очень разнообразно. Это могут быть всем привычные осветительные лампы дневного освещения, неоновые рекламные вывески, ультрафиолетовые бактерицидные облучатели (иногда их еще называют кварцевыми), облучатели, применяемые в соляриях для загара, и даже мощные корабельные и авиационные прожекторы. Это все ГРЛ. В зависимости от мощности и предназначения используется разная пускорегулирующая аппаратура. Даже спустя более 50 лет с момента появления, они не утратили своих позиций.

Автомобильный ксенон – это тоже ГРЛ.

Их можно даже встретить в мониторах, телевизорах, дисплеях ноутбуков. Они обеспечивают подсветку жидкокристаллических экранов. Хотя надо признать, сейчас все реже.

По энергопотреблению они занимают промежуточное место между тепловыми источниками света и осветительными светодиодами. Характеризуются длительным сроком службы.

Виды газоразрядных ламп.

По давлению различают: 

  • ГРЛ низкого давления 
  • ГРЛ высокого давления

Газоразрядные лампы низкого давления.

Люминесцентные лампы (ЛЛ) – предназначены для освещения. Представляют собой трубку, покрытую изнутри люминофорным слоем. На электроды подается импульс высокого напряжения (обычно от шестисот вольт и выше). Электроды разогреваются, между ними возникает тлеющий разряд. Под воздействием разряда начинает излучать свет люминофор. То, что мы видим – это свечение люминофора, а не сам тлеющий разряд. Они работают при низком давлении.

Подробнее о люминесцентных лампах — тут

Компактные люминесцентные лампы (КЛЛ) принципиально ничем не отличаются от ЛЛ. Различие только в размерах, форме колбы. Плата с электроникой для запуска, как правило, встроена в сам цоколь. Все направлено на миниатюризацию.

Подробнее об устройстве КЛЛ —  тут

Лампы подсветки дисплеев также не имеют принципиальных отличий. Питаются от инвертора.

Индукционные лампы. Этот тип осветителя не имеет никаких электродов в свое колбе. Колба традиционно заполнена инертным газом (аргон) и парами ртути, а стенки покрыты слоем люминофора. Ионизация газа происходит под действие высокочастотного (от 25 кГц) переменного магнитного поля. Сам генератор и колба с газом могут составлять одно целое устройство, но есть и варианты разнесённого изготовления.

Газоразрядные лампы высокого давления.

Существуют и приборы высокого давления. Давление внутри колбы превышает атмосферное.

Дуговые ртутные лампы (сокращенно ДРЛ) ранее применялись для наружного уличного освещения. В настоящее время применяются все реже. На смену им приходят металлогалогеновые и натриевые источники света. Причина – низкая эффективность.

Внешний вид лампы ДРЛ

Дуговые ртутные лампы с йодидами (ДРИ) содержат горелку в виде трубки из плавленого кварцевого стекла. В ней находятся электроды. Сама горелка наполнена аргоном – инертным газом с примесями ртути и йодидов редкоземельных металлов. Может содержать цезий. Сама горелка размещена внутри колбы из жаропрочного стекла. Из колбы выкачан воздух, практически горелка находится в вакууме. Более современные оснащаются горелкой из керамики – она не темнеет. Применяются для освещения больших площадей. Типичные мощности от 250 до 3500 Вт.

Дуговые натриевые трубчатые лампы (ДНаТ) имеют вдвое большую светоотдачу в сравнении с ДРЛ при тех же потребляемых мощностях. Эта разновидность предназначена для уличного освещения. Горелка содержит инертный газ – ксенон и пары ртути и натрия. Эту лампу можно сразу узнать по свечению – свет имеет оранжево-желтый или золотистый оттенок. Отличаются довольно большим временем перехода в выключенное состояние (около 10 минут).

Дуговые ксеноновые трубчатые источники света характеризуются белым ярким светом, спектрально близким к дневному. Мощность лам может достигать 18 кВт. Современные варианты выполнены из кварцевого стекла. Давление может достигать 25 Атм. Электроды изготавливаются из вольфрама, легированного торием. Иногда применяется сапфировое стекло. Такое решение обеспечивает преобладание ультрафиолета в спектре.

Световой поток создается плазмой около отрицательного электрода. Если в состав паров входит ртуть, то свечение возникает возле анода и катода. К этому типу относят и вспышки. Типичный пример – ИФК-120. Их можно опознать по дополнительному третьему электроду. Благодаря своему спектру они отлично подходят для фотодела.

Металлогалогенные газоразрядные лампы

(МГЛ) характеризуются компактностью, мощностью и эффективностью. Зачастую применяются в осветительных приборах. Конструктивно представляют собой горелку, помещенную в вакуумную колбу. Горелка изготовлена из керамики, либо кварцевого стекла и заполнена парами ртути и галогенидами металлов. Это необходимо для корректировки спектра. Свет излучается плазмой между электродами в горелке. Мощность может достигать 3.5 кВт. В зависимости от примесей в парах ртути возможен разный цвет светового потока. Обладают хорошей светоотдачей. Сроком эксплуатации может достигать 12 тысяч часов. При этом имеет хорошую цветопередачу. Долго выходит на рабочий режим – около 10 минут.

Достоинства и недостатки газоразрядных ламп.

Плюсы

  • Долгий срок полезной эксплуатации. В среднем 8000 часов.
  • Спектральные характеристики различны. Это дает возможность выбора источника света под любые нужды.
  • Высокие мощности.

Минусы

  • Обязательно наличие в схеме дополнительных элементов – пускорегулирующей аппаратуры.
  • Высокая стоимость из-за технологических сложностей при изготовлении.
  • Возможен стробоскопический эффект. Чувствительны к температуре и режиму электропитания.
  • ДРЛ озонирует воздух.
  • Некоторым типам ГРЛ требуется длительное время для запуска.
  • Сложности с утилизацией из-за содержащейся ртути.

Вывод

Несмотря на все свои достоинства и недостатки, газоразрядные лампы еще долгое время не выйдут из обихода. Особенно они незаменимы там, где требуется спектр приближенный к солнечному. Для мощных осветителей – это пока универсальный вариант, так соотношение всех характеристик и цены отличает их от иных типов освещения.


 

Об авторе: Vamfaza Все о светодиодах smd (параметры, проверка и пайка) « Предыдущая запись Для чего нужны дроссели (ПРА) для люминесцетных ламп
Следующая запись »

ПРИМЕНЕНИЕ ГАЗОРАЗРЯДНЫХ ЛАМП РАЗЛИЧНЫХ ТИПОВ

Газоразрядные лампы

Газоразрядные лампы относятся к осветительным приборам, источником видимого излучения которых служит электрический разряд в газовой среде.

Разряд в газах, сопровождающийся выделением электромагнитного излучения может иметь различные формы в зависимости от условий его возникновения и протекания.

На характер разряда влияют следующие факторы:

  • величина приложенного напряжения и расстояние между электродами;
  • состав среды, в которой происходит разряд;
  • давление газа в колбе с электродами.

В газоразрядных лампах различного типа в основном используется два вида электрических разрядов — тлеющий и дуговой.

Тлеющий разряд характеризуется малым значением протекающего электрического тока и практически полным отсутствием выделения тепла. Обычно разряд такого вида протекает в условиях пониженного давления. Структура тлеющего разряда содержит два участка — тёмное пространство, прилегающее к катоду и участок, излучающий свечение, который распространяется до анода.

Цвет видимого спектра излучения, выделяемого при тлеющем разряде, зависит от состава газовой смеси, в которую помещены электроды.

Дуговой разряд сопровождается выделением значительной энергии, как световой, так и тепловой. Ионизированный газовый промежуток при горении дуги находится в состоянии плазмы. В дуговых газоразрядных приборах используются электроды из тугоплавких сплавов, компонентом которых обычно является вольфрам.

В зависимости от типа и характеристик применяемого наполнителя колб газоразрядных источников света, спектр их электромагнитного излучения может быть смещён в зону, находящуюся за пределами восприятия человеческого глаза. Обычно это излучение ультрафиолетового спектра.

В этом случае на внутреннюю поверхность колбы наносится специальный состав — люминофор. Слой люминофора поглощает ультрафиолетовые волны, излучая при этом видимый спектр.

ГАЗОРАЗРЯДНЫЕ ЛАМПЫ НИЗКОГО ДАВЛЕНИЯ

К данному типу световых источников относятся приборы, работающие при давлении газа в колбе от 0,15 до 104 Па. Примером приборов низкого давления могут служить традиционно применяемые люминесцентные лампы дневного света, а также так называемые энергосберегающие газоразрядные лампочки.

Лампа дневного света представляет собой герметичную цилиндрическую стеклянную колбу, в торцах которой расположены цоколи с контактными штырьками для подключения.

Штырьки соединены с электродами, выполненными в виде вольфрамовых спиралей. Для обеспечения условий, благоприятных для термоэлектронной эмиссии, поверхность электродов покрыта оксидами щелочноземельных металлов.

Внутреннее пространство колбы люминесцентной лампы заполнено инертным газом — аргоном и парами ртути, обеспечивающими хорошее её зажигание.

При запуске, в парах ртути начинает протекать электрический ток, вызывая излучение электромагнитных волн частицами ртути. Свойства ртути таковы, что выделяемое ей излучение лежит в ультрафиолетовой области спектра, то есть невидимо.

Для преобразования ртутного излучения в видимый свет используется специальный химический состав, наносимый на внутреннюю поверхность колбы. Состав называется люминофором и представляет собой соли кальция, бериллия, кадмия и других металлов.

Люминофор поглощает выделяемые парами ртути ультрафиолетовые волны, выделяя при этом излучение видимого светового спектра.

В результате этого двойного энергетического преобразования световой коэффициент полезного действия люминесцентной лампочки составляет 12%, что впрочем, существенно превосходит соответствующую характеристику лампочек накаливания.

К недостаткам осветительных люминесцентных приборов можно отнести следующие характеристики:

  • необходимость использования для их питания специальной пускорегулирующей аппаратуры;
  • линейчатая характеристика спектра излучения с отсутствием отдельных световых диапазонов;
  • высокочастотное мерцание, вызывающее стробоскопический эффект;
  • потенциальная опасность паров ртути и необходимость соблюдения определённого порядка утилизации вышедших из строя приборов.
БАКТЕРИЦИДНЫЕ ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

Этот вид газоразрядных источников излучения низкого давления не относится к приборам освещения. Выделяемое парами ртути ультрафиолетовое излучение используется этими устройствами в медицинских целях. Бактерицидные свойства ультрафиолетовых газоразрядных ламп используются для обеззараживания помещений в медицинских учреждениях.

Разумеется, люминофор в этом случае не применяется. Правда, спектр излучения ртути приходится фильтровать, для чего в этих устройствах используются колбы из специального увиолевого стекла. Характеристики увиолевого стекла таковы, что оно пропускает преимущественно длинноволновое ультрафиолетовое излучение.

Это необходимо для защиты людей и растений от вредного воздействия жёсткого коротковолнового ультрафиолета и препятствию концентрации озона в воздухе.

ИНДИКАТОРНЫЕ ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

Данный вид газоразрядных лампочек применяется в электронных приборах для числовой или символьной индикации. Наиболее распространённый тип таких индикаторов представляет собой газоразрядное устройство, имеющее один анод и десять тонких сетчатых катодов.

Каждый катод соответствует одной из цифр от 0 до 9. Катоды расположены слоями, один над другим. Управляются они раздельно, при подключении одного из катодов загорается соответствующая цифра.

Громоздкость этих приборов и необходимость их питания относительно высоким напряжением привела к их полному вытеснению индикаторами светодиодного типа.

ЛАМПЫ ГАЗОРАЗРЯДНЫЕ ВЫСОКОГО ДАВЛЕНИЯ

К данному виду приборов относят источники, рабочее давление газа в колбах которых составляет от 3х104 до 106 Па. Повышенное давление газа позволяет повысить уровень создаваемого светового потока, но при этом, предъявляет особые требования к материалу и конструкции колб.

РТУТНЫЕ ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

Наиболее распространёнными приборами данного вида являются устройства типа ДРЛ (дуговые ртутные люминесцентные). Зажигание таких световых источников осуществляется с применением специальных пусковых устройств, создающих высоковольтные импульсы.

Основными конструктивными элементами приборов типа ДРЛ являются:

  • колба из стекла высокой прочности;
  • цоколь с резьбой для вкручивания в электрический патрон;
  • кварцевая горелка;
  • электроды (главные и дополнительные).

Горелка дуговой ртутной лампочки представляет собой высокопрочную стеклянную герметично запаянную трубку, расположенную внутри общей колбы. Внутри горелки под давлением находится аргон с ртутными парами.

В горелке может быть два или четыре электрода, во втором варианте два из них — основные, два других играют роль дополнительных. Наличие дополнительных электродов обеспечивает более лёгкое зажигание дуги и стабильное её горение.

Розжиг ДРЛ до номинальной яркости происходит в течение некоторого времени, которое зависит от температуры окружающего воздуха и может достигать нескольких минут после включения.

В процессе работы лампа разогревается до значительной температуры, поэтому используются такие приборы, как правило, с электрическими патронами из керамики.

Применяются дуговые ртутные лампочки для наружного освещения либо для освещения больших производственных помещений — цехов, складов и т. п.

НАТРИЕВЫЕ ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

Излучающей средой приборов этого типа являются пары натрия. Отличительная характеристика натриевой газоразрядной лампы — яркий оранжево–жёлтый цвет свечения. Такой цвет обладает преимуществами в условиях тумана или задымлённости, поэтому широко применяется для уличного освещения.

Самый распространённый представитель источников света этой категории — газоразрядная лампа ДНаТ (дуговая натриевая трубчатая).

Натриевая лампа подобно ртутной содержит две колбы — внешнюю и внутреннюю, являющуюся горелкой. Стекло горелки изготовлено из оксида алюминия.

Это обусловлено тем, что при работе внутренняя колба может разогреваться до температуры 1200°С. Внутри горелки расположены два электрода, находящихся в пространстве, заполненном смесью инертных газов.

Материалом внешней колбы служит специальное боросиликатное стекло, обладающее повышенной тугоплавкостью. При изготовлении из внутреннего пространства внешней колбы производится откачка воздуха. Создающийся при этом вакуум является надёжной защитой от высокой температуры горелки. Такая конструкция работает подобно термосу.

Наибольшее распространение имеют ДНаТ с резьбовым цоколем Е40.

ГАЗОРАЗРЯДНЫЕ МЕТАЛЛОГАЛОГЕННЫЕ И КСЕНОНОВЫЕ ЛАМПЫ

Особенностью металлогалогенных источников света является скорректированная спектральная характеристика. Коррекция достигается путём добавления в содержимое горелки кроме паров ртути специальных добавок — галогенидов некоторых металлов (йодид натрия и скандия).

Благодаря добавке галогенидов происходит заполнение провалов в области красного и жёлтого цветов, свойственным характеристикам ртутного излучения.

В ксеноновых лампах излучающей средой является ксенон, находящийся в колбе под высоким давлением, которое может достигать в некоторых типах ламп 25 атм. Колбы таких источников изготавливаются из кварцевого стекла и даже из сапфира. Ксеноновые газоразрядные лампы дают очень яркое белое свечение, близкое по спектру к дневному свету.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Натриевые лампы. Виды и устройство. Работа и применение

Натриевые лампы – это электрические осветительные приборы, излучающие красную зону светового спектра (жёлто-оранжевый свет). Свет, практически имитирующий природный, получается благодаря газовому разряду, находящемуся в парах натрия. Из-за преобладающего резонансного излучения натрия и выходит такой цвет.
Различают два типа НЛ – это лампы низкого (НЛНД) и высокого давления (НЛВД).

Натриевые лампы

НЛВД – это лампы высокого давления, являющиеся одним из типов натриевых ламп. Этот электрический источник света относится к газоразрядным лампам.

1 — Резьбовой цоколь
2 — Геттер
3 — Вакуум
4 — Цилиндрическая колба
5 — Изолирующая пробка
6 — Электрод
7 — Керамическая дуговая лампа
8 — Спай дуговой лампы

Главные компоненты устройства:
  • Цилиндрическая колба. Внешняя колба выполнена из термостекла. Далее её обрабатывают путём вакуумирования и после чего дегазируют. Благодаря такой тщательной обработке, колба поддерживает стабильную температуру при работе разрядной трубки и защищает токовые вводы от влияния атмосферных газов. Новинки среди НЛ могут иметь колбу другой формы, а также не одну, а две горелки.
  • Горелка. Для производства разрядной трубки с токоотводами используют оксид алюминия АI203. Трубка наполняется буферными газами и сплавом с ртутью (амальгамой натрия). Для улучшения цветового диапазона, в горелку нередко добавляют ксенон. Некоторые горелки НЛ ртутью не наполняются. Горелку помещают внутри огнестойкой колбы.

Много специалистов разных производств работают над улучшением показателей цветопередачи в натриевых лампах.

Для этого применяются разные методы:
  • Повышение компрессии паров натрия.
  • Увеличение диаметра горелки.
  • Введение излучающих добавок.
  • Питание НЛ импульсным током с высокой частотностью.
  • Нанесение на колбу интерференционного покрытия и люминофоров.

Ныне ведущие фирмы выпускают качественные НЛ с усовершенствованными цветопередающими свойствами.

Принцип работы НЛ

Принцип действия НЛ основан на дуговых разрядах, которые создают излучение. Пары натрия формируют газоразрядную среду в лампе и светятся цветами красного спектра (жёлтый, оранжевый, красный).

Запуск лампы и регулировка в нём тока, требует пускорегулирующую аппаратуру (ПРА), подключаемую к сети переменного тока с напряжением 220 В и частотой 50 Гц. При обычном аппарате не обойтись без импульсного зажигающего устройства (ИЗУ). Сейчас существуют лампы, которые используют пускорегулирующий аппарат электронный (ЭПРА), который не нуждается в ИЗУ. ЭПРА помимо того, что он не требует ИЗУ, обладает и другими достоинствами.

Плюсы, которые даёт ЭПРА:
  • Снижает на 30% эелектропотребление.
  • Стабилизирует мощность.
  • Исключает наличие эффекта мерцания.
  • Увеличивает светоотдачу.
  • Повышает частоту тока.
  • Увеличивает срок эксплуатации НЛВД.

Разгораются натриевые лампы около 3-5 минут. В начале эксплуатации НЛ излучают желтоватый или оранжевый цвет, но когда срок службы лампы подходит к концу, цвет освещения начинает варьироваться от тёмных оттенков оранжевого до красного.

Применение НЛ

Как и все натриевые лампы обеспечивают монохромное излучение. Подобное их специфическое свойство сужает сферу применения натриевых источников света высокого давления. Они имеют неудовлетворительную цветопередачу, но довольно высокую светоотдачу, поэтому их чаще используют для уличного, утилитарного и декоративного освещения. Т.е. в тех местах, где важны больше экономические показатели, чем достоверное воспроизведение цвета.

Чаще НЛ используют в освещении дорог, парков, скверов, торговых центров и т.п. Реже эти лампы применяют для подсветки архитектурных композиций.


НЛ часто эксплуатируют в растениеводстве в качестве освещения для растений. Золотисто-оранжевое излучение ускоряет процесс развития цветков и завязей. Использование этих ламп в теплицах сулит высокий урожай. Только их рекомендовано применять исключительно на последних этапах роста растений. Если же использовать раннее, то вместе с металлогалогенными лампами, имеющими синее свечение.

Виды НЛ и их маркировка

НЛВД отличаются мощностью и конструкцией. Они бывают низкой и высокой мощности, также их производят в 4-х разных вариантах, ещё выпускают натриевые безртутные лампы.

Варианты исполнения НЛ:
  • Лампа, имеющая стеклянную или кварцевую колбу в форме цилиндра и два цоколя.
  • Лампа с прозрачной цилиндрической колбой и винтовым цоколем (резьбовым).
  • НЛВД с матовой или прозрачной колбой эллипсовидной формы и винтовым цоколем.
  • С вмонтированным отражателем, колба которой имеет специфическую форму.
Таким образом, выделяют следующие типы натриевых источников света:
  • ДНаТ. Дуговые натриевые трубчатые лампы выполнены в цилиндрической колбе. У ламп типа ДНаТ наибольший КПД, их можно отнести к наиболее экономичным источникам света. Выпускаются они разной мощности и обеспечивают контрастную видимость различных объектов при любых погодных условиях.

 

Какие объекты освещают лампами ДНаТ:

— туннели;
— промышленные зоны;
— аэродромы и вокзалы;
— улицы и транспортные магистрали;
— теплицы;
— клумбы и т.п.

  • ДНаЗ. Эти лампы производятся в колбе эллипсоидной формы с внутренним зеркальным покрытием.

 

Особенности ДНаЗ:

— зеркальная алюминиевая плёнка, используемая в качестве внутреннего покрытия колбы, герметично изолированная от окружающей среды;
— вращающийся цоколь;
— КПД не ниже 95%;
— долговечность отражающих свойств;
— не нуждается в чистке;
— повышенная освещённость.
Срок службы и высокая производительность ДНаЗ обеспечены зеркальным слоем, так как благодаря этому, излучаемый свет в рабочем режиме прибора, не попадает на горелку.
Натриевые зеркальные лампы бывают разных модификаций. Они обеспечивают отменный рост растений, поэтому их широко эксплуатируют при выращивании декоративных и овощных растений.

  • ДНаС. Натриевые спектральные лампы со светорассеивающей колбой эллиптической формы. В качестве внутреннего покрытия использован слой светорассеивающего пигмента, благодаря этому их можно применять в осветительных приборах, предназначенных для ламп ДРЛ (газоразрядных ртутных ламп). Для облегчённого зажигания, разрядные трубки ДНаС заполнены вместо ксенона смесью Пеннинга.

 

Применяется в следующих отраслях:

— химии;
— лабораторной и медицинской технике;
— спектроскопии;
— поляриметрии и т.п.

  • ДНаМТ. Это дуговые натриевые лампы, выпущенные в матовой колбе.

Натриевая лампа с высокой мощностью (от 100 Вт) оборудованы цоколем Е40. Цоколем лампочек с мощностью ниже 70 ВТ – Е27.
НЛВД, выпущенные иностранными производителями, имеют разную маркировку. Каждая фирма маркирует лампы по-своему. Отечественные производители стараются придерживаться единства в маркировке этих лампочек.
Выделяют 4 вида натриевых ламп, которые принято обозначать: ДНаТ, ДНаС, ДНаЗ, ДНаМТ, — при этом первые три буквы «ДНа» значат, что лампа дуговая натриевая, Т- трубчатая, С – спектральная, З – зеркальная, МТ – матовая колба. После букв могут стоять разные цифры, указывающие на мощность и конструктивные особенности.

Достоинства и недостатки НЛ
Достоинства НЛВД:
  • Высокая светоотдача.
  • Наличие теплового излучения.
  • Долговечность.
  • Световой поток практически не изменяется на протяжении всей службы лампы.
  • Высокий КПД.
  • Температурная рабочая среда -60 …+40°С.
  • Экономичность.
Недостатки НЛВД:
  • По окончании службы лампы, её цветовой диапазон сменивается.
  • Ртутные НЛВД нельзя назвать безопасными лампами.
  • Их нельзя применять в сетях, в которых напряжение отличается от номинального на 5-10% или происходят постоянные скачки.
  • Эффективность свечения снижается в мороз.
  • Зажигание лампы и стабилизация её свечения занимает до 7 минут.

Учитывая особенности НЛ, оптимальным вариантом для их эксплуатации являются случаи, требующие экономичный и мощный источник света и не нуждающиеся в безошибочной цветопередаче.

Похожие темы:

Натриевые лампы: особенности и принцип действия

Натриевые лампы – осветительные устройства, использующие в качестве рабочего вещества металлические пары. В отличие от двух прочих классов разрядных приборов. К примеру, ртутные лампы используют разряд в газах, выделяют семейство осветительных приспособлений, где рабочим веществом становятся соединения металлов.

Ключевые особенности разрядных натриевых ламп

Считается, что натриевые лампочки обладают самой большой светоотдачей, что предполагает наличие внушительного КПД. Изделия характеризуются, помимо прочего, долгим сроком службы. В период эксплуатации светоотдача снижается незначительно. Рабочие параметры (ламп высокого давления) мало зависят от температуры окружающей среды (перегрев исключается правильно реализованной конструкцией). Натриевые лампочки востребованы для освещения улиц. Присутствуют серьёзные недостатки:

  1. Не слишком достоверная цветопередача (значения коэффициента – 25). Это долго считалось основным ограничением для применения разрядных ламп в быту. Крайне плохо выглядит при подобном освещении человеческая кожа.
  2. Разряду в парах натрия присуща глубокая пульсация, что приводит к быстрому утомлению зрения. Эффект мерцания вреден для нервной системы и ряда аспектов человеческого здоровья. Упомянутое явление объясняется полной безынерционностью дуги в парах натрия – свечение повторяет закон приложенного напряжения (в сети обычно синусоида частоты 50 Гц).
  3. По мере расходования ресурса жизни потребляемая мощность натриевой лампы постепенно растёт и повышается на 40% относительно первоначальной.
  4. Пускорегулирующий аппарат натриевых ламп громоздкий (занимает много места) и характеризуется большими потерями (до 60% от полной расходуемой энергии).
  5. Наличие пускового дросселя предопределяет низкий коэффициент передачи мощности (до 0,35). Что требует наличия солидного блока компенсирующих конденсаторов для устранения реактивной части.
Осветительное устройство

Осветительное устройство

Перечисленное объясняет применение натриевых лампочек преимущественно для ночного освещения, в особенности, нежилых объектов: цехов, складов, железнодорожных станций. Дополнительно – для хранилищ, дорожных магистралей, архитектурных сооружений. Жёлтый свет натриевой лампы низкого давления позволяет человеку различать детали при сравнительно низкой интенсивности излучения, превосходно проходит сквозь туман в плохих погодных условиях. Указанная специфика делает возможным создание на основе описанных приборов множества сигнальных установок.

Часть приведённых выше недостатков удаётся устранить применением электронных балластов инверторного типа. Этим снижается энергопотребление, по причине отсутствия пускового дросселя коэффициент мощности достигает 0,95. Разумеется, масса электронного балласта невелика. Это известно человеку, знающему о преимуществах светодиодных и разрядных ламп с эдисоновской резьбой Е27. Вся электроника здесь умещается в цоколе.

Срок службы натриевых лампочек повышенного давления колеблется в пределах 12 – 28 тысяч часов. Это конкурентоспособные значения, в пересчёте на трудодни составляет 4 – 9,5 лет. Постепенно падение напряжения на лампах увеличивается со скоростью 1 – 5 В ежегодно. Что становится причиной, провоцирующей отказ.

Колба ламп низкого давления обычно цилиндрическая. У изделий высокого давления – иногда грибовидная с внутренним отражателем или эллипсоидная. В последнем случае спектры свечения градируются по мощности: для её средних величин давление в колбе максимальное, объясняя упомянутое деление. На спектральные характеристики влияет сетевое напряжение (если не используется электронный балласт). Критичен срок службы и к амплитуде: увеличение или снижение вольтажа лишь на 5% приводит к резкому старению изделия.

Для рядовых потребителей представляют интерес лампы с улучшенной цветопередачей. Соответствующий коэффициент изделий достигает 83, что признано прекрасным показателем. К примеру, для светодиодных лампочек типичными значениями считаются 70 и более. Последние массово применяются в быту, мало отыщется желающих на такие параметры жаловаться. А учитывая экономичность натриевых лампочек, полагаем, приборы станут достойным конкурентом для прочих семейств осветительных приборов.

Работа лампы

Работа лампы

Принцип действия натриевых ламп

В герметичной колбе создаются условия для испарения натрия. Для получения света используют D-линии на волнах 589 и 589,6 нм. Натриевые лампы бывают высокого и низкого давления. Согласно общепринятой классификации это, соответственно, от 30000 до 1 млн. Па и от 0,1 до 10000 Па. Такое положение дело возникло на основе долгих исследований специфики разряда.

Установлено, что максимум светоотдачи отмечается при давлениях 0,2 и 10000 Па. Первые натриевые лампы, созданные в 1931 году Марселло Пирани, функционируют на первом экстремуме функции в пределах указанного интервала при плотности тока 0,1 – 0,5 А на квадратный сантиметр. Наиболее благоприятные условия для излучения света достигаются при температурах жидкой фазы в интервале 270 – 300 градусов Цельсия (температура цоколя, по крайней мере, вдвое ниже). Лампы, работающие при давлении 0,2 Па, эффективнее.

Второй экстремум достигается при дальнейшем нагреве паров. При температурах 650 – 750 градусов Цельсия. Натриевые лампы повышенного давления долго не удавалось создать. Сложность заключалась в отсутствии подходящего материала для колбы. Лишь алюминиевая керамика сумела выдержать натиск агрессивной среды при температурах выше 1000 градусов (1300 – 1400 градусов Цельсия). Искусственные материалы дали человечеству немало, о чем косвенно упоминалось в обзоре по теме Электрических цепей.

Натриевые лампы низкого давления

Лампы низкого давления чрезвычайно эффективны. Указанные выше длины волн становятся доминирующими, но далеко не единственными в спектре свечения. У ламп низкого давления большинство линий лежит в области чувствительности глаза. Это значит, свет максимально ярок. Иными словами лампы низкого давления обладают привлекательным КПД.

У лабораторных моделей коэффициент полезного действия достигает 50-60%. В результате световая отдача поднимается до 400 лм/Вт (теоретический предел для современного уровня технологии составляет 500 лм/Вт).

Для сравнения. Светодиодная лампочка EKF мощностью 9 Вт (аналог нити накала мощностью 75 Вт) отдаёт поток 830 лм. Цифра считается хорошим показателем энергосбережения. Хотя световая отдача, нетрудно догадаться, составляет «лишь» 92 лм/Вт. Становится понятно, сколь эффективны натриевые лампы низкого давления, изобретённые давно, в 1931 году.

На практике приходится идти на жертвы (на лампочки Philips по-прежнему хороши и достигают световой отдачи в 133-178 лм/Вт). Температура колбы поднимается до необходимых 270-300 градусов Цельсия за счёт специальных мер по теплоизоляции (превышением радиуса колбы над максимально эффективным) и некоторого увеличения рабочего тока до оптимального. Как результат, КПД реальных изделий, выпущенных для массовой продажи, не достигает указанных выше границ. Но остаётся повышенным, чтобы натриевые лампочки назвали энергосберегающими.

Теплоизоляцию иногда дополняют и иными мерами. Отражающая рубашка из полупроводниковых материалов пропускает наружу полезное излучение жёлтого цвета, но отражает внутрь инфракрасное. Температура внутри дополнительно повышается. Но конструкция натриевой лампы сложнее.

Розжиг дуги облегчается добавлением некоторого количества неона и аргона. Этим сильно снижается напряжение, развиваемое драйвером. По причине наличия примесей стекло колбы не поглощает аргон. Радиус лампы берётся чуть больше оптимального и составляет 15-25 мм. Оксидный катод обычно бифилярный или сиптерированный (спечённый из порошка). В качестве материала используется вольфрам, активированный щелочными (щёлочноземельными) металлами.

Лампа низкого давления

Лампа низкого давления

Натриевые лампы высокого давления

В газовую смесь, помимо натриевых, добавляют пары ртути и снижающего напряжение розжига (до 2-4 кВ) ксенона. Давление в колбе находится в пределах от 4 до 14 кПа. Несложно заметить, что, согласно общей классификации разрядных ламп, указанный диапазон относится к низкому давлению.Для натриевых ламп выше 14 кПа указанный параметр не поднимается. Диапазон 4 – 14 кПа выносится в разряд сильного давления.

Максимум эффективности лежит в районе 10 кПа. Парциальное давление натриевых паров составляет десятую или двадцатую долю от общего. Прочее приходится на ртуть и ксенон. Давление последнего (в холодном виде) составляет 2,6 кПа. Если для снижения напряжения розжига применять смесь неона и аргона, световая отдача натриевой лампы снижается на четверть.

В спектре натриевых ламп повышенного давления, помимо D линий, отмечается активность в сине-зелёной части спектра. За счёт чего даваемый оттенок не жёлтый, а золотисто-белый (цветовая температура в теплом промежутке – 2000 К). Индекс цветопередачи (максимален при 2500 К) возможно повысить увеличением парциального давления паров натрия и диаметра колбы. Одновременно почти вдвое снижается световая отдача, уменьшается срок службы. Происходит повышение цветовой температуры. Ввиду описанных выше негативных результатов на такие меры идут редко.

В качестве материала колбы используется алюминиевая керамика. Обычное силикатное стекло непригодно, пары натрия под действием немалой температуры вступают тогда в химическую реакцию. Образуемые соединения устойчивы, и колба ощутимо чернеет уже через несколько минут после начала работы изделия. Изменения необратимы, под действием сильного давления присутствует вероятность полного разрушения стекла.

Поликристаллическая керамика и трубчатый монокристалл при толщинах стенки от 0,5 до 1 мм одинаково устойчивы к действию агрессивной среды до температуры 1600 К, с некоторым запасом относительно оптимальной точки. Керамика обнаруживает достойный коэффициент пропускания излучения в видимом диапазоне, занимающий 30% потребляемой натриевой лампой энергии.

Запредельные температуры требуют специальной конструкции вводов. Изготавливаемые из ниобия с малой (1%) примесью циркония они герметизируются на входе в колбу особым стеклоцементом (способным выдержать указанные агрессивные условия). Столь изощрённый по составу сплав выбран неспроста. Конструкторы изыскали материал, коэффициент теплового расширения которого близок к керамике. В результате удаётся избежать деформаций на стыках и швах. Та же идея используется в металлических оконных рамах. Известно, что коэффициент теплового расширения алюминия близок к значениям стекла.

Натриевым лампам повышенного давления присуща инерционность. При первом зажигании свет жёлтый и монохроматический. Постепенно изделие выходит на режим с одновременным расширением излучаемого спектра. Для повторного розжига дуги газ остывает, отнимая 2-3 мин. Чтобы не превысить рабочих температур, требуется исключить отражение излучения на колбу. В противном случае натриевая лампа выходит из строя от перегрева.

Натриевые лампы высокого давления. Натриевые лампы для растений в теплицах :: SYL.ru

Газоразрядные натриевые лампы являются самыми эффективными среди существующих источников света по соотношению светоотдачи к затрачиваемой энергии, однако их спектр некомфортен для человеческого глаза. Отсутствие синего цвета формирует монохромную картину окружающего пространства. Из-за этой особенности натриевые светильники, несмотря на отличную экономичность, применяются ограниченно — в основном для уличного освещения. Между тем преобладание желто-красного «солнечного» и зеленого спектров благотворно сказывается на росте всех видов растений, что нашло широкое применение в тепличных хозяйствах.

натриевые лампы для теплиц

Что такое натриевые лампы

Они относятся к газоразрядным лампам по аналогии с ртутными, люминесцентными, галогенными, ксеноновыми «собратьями». Источником свечения является газообразный натрий в сочетании с другими элементами, закаченный в стеклянную колбу. Под воздействием электрической дуги натрий разогревается до высоких температур и начинает светиться ярким желто-оранжевым светом, к концу службы лампы переходящим в красный спектр.

Характеристики

Мощность натриевых ламп самая высокая в классе – до 200 Lm/W (Люмен на Ватт). Характерными особенностями являются низкая цветовая температура (2100-2700 K) и доминирование желто-красного спектра излучения при минимальном количестве синего. Такое сочетание приводит к тому, что светильники данного типа наполняют окружающее пространство монохромным желто-оранжевым светом, в результате чего человеческий глаз недостаточно хорошо различает цвета и очертания предметов. Они теряют глубину, объем, затрудняется ориентация и оценка расстояний до объектов. Зато для растений на определенных этапах роста как раз необходим «солнечный» спектр излучения.

натриевые лампы высокого давления

Виды ламп

По принципу работы они подразделяются на два основных класса:

  • Натриевые лампы высокого давления (HPS – HighPressure Sodium).
  • Натриевые лампы низкого давления (LPS – Low-Pressure Sodium).

Разработаны LPS-лампы в 30-х годах прошлого века. У них высочайшая эффективность (180-200 Lm/W), однако из-за конструктивного несовершенства эти лампы оказались капризными и даже опасными. Обычное кварцевое стекло беззащитно перед агрессивным воздействием натрия: он быстро улетучивался, а если осветительный прибор разбить – при реакции с кислородом газ может взорваться (воспламениться).

В 60-е компания General Electric разработала керамику с использованием оксида алюминия (поликор, лукалос), способную противостоять натрию при высоких температурах. Этот прорыв позволил вернуться к производству данного типа световых приборов, обладающих отличной экономичностью. Для улучшения свечения газа его закачивают под высоким давлением. Электрическая схема более простая, чем у LPS. К сожалению, повышение давления газа и другие факторы привели к значительному уменьшению световой отдачи – до 50-150 Lm/W (в зависимости от ее мощности), зато коэффициент цветопередачи (CRI) увеличился с 20 до 85 и выше (с недостаточной до хорошей).

натриевые лампы для растений

Область применения

Светильники с натриевыми лампами низкого давления в мире большого распространения не получили. В СССР и США ставку сделали на более технологичные ртутные световые системы. В ряде европейских стран их активно применяют для освещения автомобильных дорог.

Натриевые лампы высокого давления более распространены. У нас они применяются для освещения городских улиц, в ландшафтном дизайне, для подсветки архитектурных объектов. Используются в производственных помещениях, где не требуется яркого света. В последнее время ведущие корпорации (Philips, General Electric и другие) значительно усовершенствовали конструкцию и потребительские качества этих ламп: их спектральный охват значительно расширился, увеличилась цветовая температура (с 2100 до 2700 K) – некоторые модели уже подходят для освещения жилых (производственных) помещений. Особо следует отметить применение натриевых ламп в тепличном хозяйстве.

Классификация

Натриевые светильники различаются по нескольким важным параметрам. По конструктивному типу они делятся на:

  • Дуговые натриевые зеркальные (ДНаЗ).
  • Дуговые натриевые матированные (ДНаМТ).
  • Дуговые натриевые в светорассеивающей колбе (ДНаС).
  • Дуговые натриевые трубчатые (ДНаТ).

Также различают светильники по потребляемому току (220V и 380V), которые, в свою очередь, подразделяются по мощности: от 50 до 1000 Вт.

натриевые лампы

Натриевые лампы для теплиц

Анализ энергопотребления теплиц показал, что наиболее энергоемкими являются процессы облучения и обогрева растений. Около 40 % электроэнергии, потребляемой тепличными хозяйствами, используется для облучения. Поэтому аграрии достигают увеличения овощной продукции за счет внедрения энергосберегающих осветительных устройств.

Большое значение, помимо оптимальных параметров микроклимата теплиц, имеет качество облучения растений. Поэтому актуальным является также изучение влияния качественных параметров освещения на процессы роста и морфологического развития саженцев. Использование в технологиях облучения растений принципиально новых источников света – современных натриевых светильников в сочетании с другими источниками освещения (например, светодиодами) – позволяет значительно увеличить показатели конечной урожайности.

светильники с натриевыми лампами

Научный подход

Лидером в области совершенствования освещения теплиц является голландская корпорация Philips, что неудивительно, учитывая передовые позиции тепличной отрасли Нидерландов. Компания провела научно-практические исследования (в 2012 на Украине, в 2013 в Голландии), доказавшие, что натриевые лампы для растений наиболее предпочтительны. Они эффективнее компактных люминесцентных ламп, обладающих меньшей световой отдачей и не обеспечивающих оптимальный световой спектр. Параллельно доказано: лампы накаливания и ртутные светильники потребляют слишком много электроэнергии, чтобы быть экономически выгодными.

Еще лучшие показатели достигаются, если растения подсвечивать не только сверху, но и по бокам, в междурядьях. Для этого вполне подходят экономичные светодиоды (СД). Сочетание натриевых светильников со светодиодными способствуют большей урожайности. В 2012 году в Умани (Украина) была создана первая промышленная теплица, где сочетались эти виды осветительных приборов. Площадь участка при смешанном освещении СД и натриевыми лампами составляла 6000 м2. Всего в теплице было установлено 1230 СД-модулей и 870 светильников с лампами ДНаТ. Эксперимент показал, что урожайность томатов (при соблюдении других требований) может достичь 73 кг/м2 ежегодно.

Затем благодаря аналогичному эксперименту в Нидерландах (2013) совместное использование ДНаТ и СД привело к увеличению урожайности на 30 %. В дальнейшем технологию переняли в Англии, Дании, Канаде, Японии, Китае и других странах.

Технология

Как правило, промышленные теплицы делают из прозрачных материалов, чтобы растения подсвечивались солнцем. Однако на широтах более 40о (ближе к полюсам) естественного освещения хватает только на 4-5 месяцев (май-сентябрь). В оставшееся время необходима дополнительная подсветка. Причем на различных этапах вегетации и для разных культур требуется свой спектр излучения.

Светильник под натриевую лампу размещается сверху – он заряжает растения желто-красным «солнечным» светом (зеленый спектр, также излучаемый этими осветительными приборами, не так важен). Светодиоды (либо люминесцентные лампы) целесообразно использовать как дополнительный инструмент при боковом облучении, основное преимущество которого заключается в том, что, находясь в нижней части вертикально выращиваемых растений, свет попадает на нижние ярусы листьев, которые получают недостаточно верхнего света. Такая комбинация повышает интенсивность фотосинтеза, благоприятствует росту, правильному развитию растений. Дополнительное освещение пригодится на этапах, когда выращиваемым культурам требуется синий спектр света, который у натриевых светильников почти отсутствует.

мощность натриевых ламп

Как это работает

За поглощение фотонов света у растений отвечают специальные пигменты — каратиноиды, a- и b-хлорофиллы. Каратиноиды поглощают свет исключительно синего диапазона, хлорофиллы – синего и красного. Однако максимумы поглощения хлорофиллов – главных фотосинтетических пигментов – находятся в пределах 640-680 нм, а каротиноидов – в пределах 470-480 нм. Согласно этим параметрам, самыми эффективными источниками света для условий тепличного хозяйства считаются натриевые лампы освещения высокого давления (НЛВТ) с рабочим диапазоном 500-700 нм. Их стабильность, срок работы, световая отдача, экономическая эффективность наиболее оптимальны.

Лампы мощностью 50-150 Вт менее надежны и имеют низкую стабильность параметров в течение срока эксплуатации, чем лампы средней мощности (250 Вт и более). Причины этого – в наличии заметного выпрямляющего эффекта при воспламенении ламп малой мощности, который может достигать 2 минут. При этом через лампу проходит повышенный ток, в результате чего происходит интенсивное распыление катодных материалов и образование на внутренней поверхности разрядной трубки непрозрачного налета. Зажигающий импульс и величина пускового тока влияют на значимость эффекта выпрямления, поэтому энергия импульса должна обеспечивать быстрый переход от тлеющего разряда в дуговой. Для предотвращения возникновения эффекта выпрямления тока используют устройства для блокировки постоянного тока. Поэтому в теплицах чаще применяют НЛВД мощностью от 250 Вт.

Впрочем, многочисленные теоретические и экспериментальные исследования процессов в разряде, на электродах и в приэлектродных участках газово-разрядных ламп показали, что есть целый ряд вопросов, которые требуют дальнейшего совершенствования. Для НЛВТ, которые используются в растениеводстве закрытых грунтов, необходимо прежде всего оптимизировать спектральный состав излучения под конкретные светокультуры и уменьшить содержание ртути в разрядной трубке, предупредив возможное загрязнение окружающей среды парами ртути с приборов, вышедших из строя.

натриевые лампы освещения

Вопросы экологии

Создание современных технологий выращивания тепличных растений связано с использованием высокоинтенсивных разрядных ламп, в частности натриевых. Их широкое применение является положительным фактором интенсификации этого производства, хотя и связано с серьезной экологической проблемой. В состав подавляющего большинства современных разрядных ламп входит токсичное вещество – ртуть. В натриевых светильниках, например, может содержаться амальгама натрия (сплав ртути). Если такой светильник разобьется над посадками внутри теплицы, размещенные под ней растения (зелень, овощи, рассада, комнатные цветы) становятся непригодными к использованию.

Главным направлением повышения экологичности является создание высокоэффективных безртутных газоразрядных ламп. В последнее время эти работы проводились отдельными светотехническими фирмами, в том числе и в странах СНГ. Натриевые лампы с уменьшенным количеством ртути в разрядной трубке и полностью безртутные модели уже существуют и все чаще применяются в тепличном хозяйстве.

Натриевые лампы высокого давления для освещения растений

Любые культивационные сооружения, будь то теплицы, либо парники накрывают материалом, пропускающим солнечные лучи, чтобы растения могли осуществлять процесс фотосинтеза. Одни покрытия справляются с этой задачей получше, другие хуже. При разведении культур в летний период, а также в конце весны и начале осени освещения растениям вполне хватает. А вот если появилась необходимость начать эксплуатировать сооружение пораньше, к примеру, с начала марта, то без дополнительного искусственного освещения и натриевых ламп высокого давления обойтись вряд ли удастся. Любые сельскохозяйственные культуры для полноценного развития нуждаются в двенадцатичасовом световом дне.

Русский ботаник, академик Императорской Академии наук Санкт-Петербурга А.С. Фаминцын был первым ученым, доказавшим, что процесс фотосинтеза может осуществляться не только под воздействием дневного света, а и при искусственном освещении. В его научной лаборатории для изучения процессов использовали водоросли и керосиновые лампы. Именно его исследования положили начало применению искусственных источников света для сельскохозяйственных целей, многочисленные разновидности которых мы используем сегодня.

Натриевые лампы дают теплое оранжево-желтое освещение

В естественной среде, то есть под открытым небом, стебли, а в большей степени листья, поглощают из воздуха влагу, углекислый газ, а назад в атмосферу отдают кислород. Солнечный свет используется растениями для фотосинтеза. Часть света поглощается землей, за счет чего она прогревается. Свет является главным источником энергии для растений. Для фотосинтеза большинство культур используют электромагнитные излучения в диапазоне четыреста-семьсот нанометров. Для растений непригодны УФ-излучение (ниже 380 нм) и ИК-излучение(выше 780 нм).

Красные, желтые и оранжевые части спектра влияют на цветение, плодоношение, корнеобразование и развитие растения в длину. Холодный синий спектр стимулирует развитие кустистости стеблей и листвы, а также рост в ширину. Для выращивания растений необходимо сбалансированное освещение. Получается, что, выбирая источники искусственного света, нужно обращать внимание на спектральные характеристики прибора.

Сбалансированное освещение на основе LED-ламп и НЛВД

Цветовая температура у разных источников света различная, к примеру:

  • пламя свечи имеет температуру 1900 К,
  • cолнце – 5000-5500 К,
  • небо в ясный день 10000-20000 К.

Солнечный свет, необходимый растениям, не постоянен, его температура варьируется и зависит от времени дня, поэтому для его имитации чаще всего используются комбинированные осветительные приборы. Солнце, находящееся:

  • возле горизонта во время заката имеет температуру 3400 К,
  • утреннее и обеденное солнце – 4300-4500 К,
  • в зените – 5000 К.
  • в сумерках освещение холодное – 7500-8500 К.

Яркий свет необходим светолюбивым растениям, которые в естественной среде растут или выращиваются на хорошо освещенной местности. Им требуется освещенность не менее 15000-20000 люкс. Растения, которые удовлетворительно чувствуют себя в полутени, требуют от 10000 до 15000 люкс. Освещение ниже 5000 люкс недостаточно даже для теневыносливых и тенелюбивых культур. Чтобы определить освещенность, нужно использовать специальный прибор – люксметр. Также существуют удобные комбинированные аппараты, которые одновременно могут измерять влажность и кислотность почвы плюс освещенность.

Прибор 3-в-1 для измерения кислотности, влажности и освещенности

Производители осветительных приборов указывают на упаковке следующие характеристики:

  • Световая отдача, которая характеризуется отношением количества светового потока к получаемой лампой мощности и измеряется в лм/Вт. Другими словами световая отдача – это подобие эффективности или КПД, значения которых зависят от мощности прибора. Лампы накаливания имеют 13,8-15 лм/Вт, светодиоды от 10 до 300 лм/Вт, лампы натриевые высокого давления (НЛВД) 90-150 лм/Вт.
  • Цветовая температура (ед. измерения – Кельвины (К)). Она показывает, в какой части спектра дает излучение лампа. Теплый желтый свет лампы натриевой ВД – 2000 К, лампа накаливания имеет температуру 2200-2800 К, люминесцентная белого света – 3500 К, а холодного – 4000 К.
  • Индекс цветопередачи дает возможность оценить, насколько цветовой оттенок лампы близок к естественному свету Солнца.

Цветовая температура

Растениям нужна определенная освещенность (измеряется в люменах и люксах) – это то количество света, которое попадает на поверхность. В физике освещенность – зрительное понятие. Для того, чтобы охарактеризовать потребности растения в свете, используются другие величины:

  • облученность – по другому энергетическая освещенность или фотометрия, измеряемая в Вт/м2
  • либо фотосинтетически активная радиация, измеряемая в микромоль·фотонах/сек·м2. Иностранные производители пишут название термина на английском языке: Photosynteticaly Active Radiation (PAR).

Облученность, другими словами, является мощностью излучения, достигающего поверхности. ФАР – часть солнечной радиации, находящаяся в диапазоне 400-700 нанометров и используемая зелеными растениями для фотосинтеза.

— Лампы накаливания имеют небольшую световую отдачу, сильно греются и расходуют много электрической энергии. Для досветки растений они малопригодны, единственное, что у них есть положительное – низкая стоимость.

– Лампы газоразрядные высокой интенсивности. Внутри таких изделий находятся колбы с галогеном в виде газа. В группу входят три вида ламп:

  • натриевые (типа ДНАТ (на английском HPS)
  • металлогалогенные (типа МН-МГ)
  • ртутные (ДРЛ).

Ртутные наиболее дешевые, но имеют наихудший спектр излучения, светят они слабо. Для сравнения ртутная лампа (175 Вт) дает 8000 люменов (лм), а натриевая (150 Вт) – около 15000, то есть больше в два раза. Получается, что натриевые лампы вдвое эффективнее, чем ртутные. При использовании светильников с рефлекторами световой поток натриевой лампы можно увеличить еще на 30%.

Лампы металлогалогенные, кроме ртутных паров, содержат иодиды металлов. Они имеют сбалансированный спектр красной и синей области. Свет таких ламп более хорош для вегетативного развития растений, чем свет натриевых, но менее эффективен (на 10-15%).

Натриевые лампы содержат внутри колбы ртутные и натриевые. Их свет теплый: желто-оранжевый. Он соответствует полуденному солнечному свету. Свет натриевых ламп больше подходит для подсветки растений в период цветения.

Конструкция лампы натриевой ВД

Существуют еще люминесцентные лампы, по сути это те же газоразрядные, но низкого давления. Их использование в быту более безопасно. Светоотдача прибора зависит от длины изделия. Более эффективным считается использование одной длинной лампы вместо нескольких коротких.

Наиболее доступными искусственными источниками света считаются лампы натриевые ВД (высокого давления). Их наиболее часто применяют в тепличных хозяйствах. Спектр их излучения усилен в голубом и красном диапазоне, ряд производителей выпускает довольно сбалансированные изделия.

НЛВД имеют наибольший коэффициент полезного действия ФАР (фотосинтетической радиации), который достигает 25-35%. Они также характеризуются более длинным сроком службы. Эти лампы целесообразно применять на более поздних этапах развития растений (репродуктивных). Если применять фитолампы этого типа для освещения рассады, она может вытянуться, растения будут раскидистые с длинными междоузльями. У томатов, к примеру, кисти с плодами закладываются через каждые два-три междоузлья, поэтому использование НЛВД для освещения рассады даст нежелательный результат: в дальнейшем на растении высотой в 150-180 см вместо пяти-шести кистей будет две-три. Урожайность снизится.

Для НЛВД нужны специальные светильники с отражателями

А вот досвечивать взрослые растения в период вызревания плодов, либо цветения натриевыми лампами эффективно. Их свет способствует ускорению цветения и завязыванию плодов. Использование светильников с НЛВД позволяет собирать более высокие урожаи овощей, фруктов и трав, декоративные растения под таким освещением цветут более обильно.

По сравнению с лампами накаливания, имеющими сходную цветовую температуру, НЛВД имеют более продолжительный срок службы, их светоотдача больше в шесть раз на каждый Вт электроэнергии. В качестве дополнительного освещения НЛВД используют в теплицах средней полосы и в более южных регионах. В таких зонах недостаточный диапазон синего света растения получают естественным способом. В более северных областях недостаточность освещенности более длительная, поэтому НЛВД необходимо комбинировать с другими световыми источниками, чтобы обеспечить растения всем необходимым.

Свет НЛВД привлекает насекомых, как опылителей, так и вредителей. При их использовании необходимо контролировать температурный режим в культивационном сооружении, так как НЛВД излучают много тепла. Повышенная температура также способна вызывать вытягивание стеблей.

Высоту установки искусственно освещения необходимо рассчитывать

Для справки: производители ламп часто указывают такой параметр, как световой поток, используя единицу измерения люмен. Это количество света, которое дает источник света в общем, а какая его часть достигнет растений, зависит от того, насколько далеко от поверхности располагается светильник. Чтобы растения получали максимальное количество света, светильники с НЛВД располагают поближе к посадкам и используют рефлекторы, позволяющие направлять световое излучение. Поскольку натриевые лампы нагреваются при работе, расстояние слишком маленькое делать не стоит, чтобы растениям не было жарко.

Новые лампы светят оранжево-желтым светом, а в конце срока эксплуатации спектр смещается к темно-оранжевому, а затем к красному. Такие лампы эксплуатировать нельзя, их следует заменять на новые.

Ряд зарубежных и отечественных производителей выпускает специальные НЛВД для применения в тепличных хозяйствах и для домашней досветки растений.

  • Компания Philips производит серию под названием ‘Son Т Agro’, подобные лампы есть и в ассортименте General Electric – ‘Lucalox’. Мощность стандартная 250, 400 или 1000 Вт. Например, лампы в 400 Вт – это довольно мощные источники света, которые можно применять в небольших оранжереях. Под воздействием их освещения стебли растений хорошо ветвятся. Срок службы ламп этих производителей 10000-12000 часов. Они дают световой поток 55000-65000 люменов.
    Натриевая лампа для растений Son Т Agro от Philips
  • Лампы ДНаТ (дуговые натриевые трубчатые) выпускают многие производители, причем, существуют специально предназначенные для разведения растений: в их спектре свечения соединяются два пика (синего и красного цвета). Такие лампы могут использоваться во время всего цикла выращивания, а не только на стадии цветения, либо плодоношения.
  • Фирма OSRAM разработала линейку натриевых ламп ‘Plantastar’ (мощность 250, 400 или 600 Вт) для использования в теплицах. Их изделия имеют повышенную прочность, благодаря применению металлокерамики в разрядной трубке. Лампы ‘Plantastar’ могут использоваться в условиях повышенной влажности. За 12000 часов работы световой поток не снижается ниже 90%. Есть серия OSRAM Plantastar 250W Inter, разработанная для бокового освещения взрослых растений, такие источники света подвешивают между рядами. Свет ламп стимулирует процесс цветения. Световой поток 55000-60000 люменов.

Натриевая лампа для теплиц – OSRAM Plantastar

 

Газоразрядные лампы высокого и низкого давления: цены — Asutpp

Электрические устройства, состоящие из прозрачного контейнера, в котором газ питается от напряжения, благодаря чему происходит процесс свечения, называются газоразрядные лампы. Предлагаем рассмотреть, чем разнятся лампы газоразрядные высокого давления и лампы накаливания, как работает данное устройство и где их купить.

Принцип работы газоразрядной лампы

Газоразрядная лампа является источником свечения, который генерирует свет, создавая электрический разряд через ионизированный газ. Как правило, эти лампы используют такие газы, как:

  • аргон,
  • неон,
  • криптон,
  • ксенон, а также смеси этих газов.

Много ламп заполнены дополнительными газами, такими как натрий и ртуть, в то время как другие используют металлогалогенные добавки.

При подаче питания на лампу, электрическое поле генерируется в трубке. Это поле образует включения свободных электронов в ионизированный газ, т.е. обеспечивает столкновение электронов с газом и атомами металла. Некоторые электроны, вращающиеся вокруг этих атомов, обеспечивают столкновения в более высокое энергетическое состояние. В таких случаях высвобождается энергия фотонов. Этот свет может быть каким угодно от инфракрасного видимого и до ультрафиолетового излучения. Некоторые лампы имеют люминесцентное покрытие на внутренней стороне колбы для преобразования ультрафиолетового излучения в видимый свет.

Некоторые лампы трубчатой формы содержат специальный источник бета-излучения, чтобы обеспечить ионизацию газа внутри. В этих трубах, тлеющий разряд, обеспеченный катодом, сведен к минимуму, в пользу так называемого положительного столба энергии. Самый яркий пример такой технологии – энергосберегающие неоновые лампы, газоразрядные импульсные ифк и флуоресцентные.

Газоразрядные лампы и виды катодов

Многие слышали термин газоразрядные люминесцентные лампы с холодным катодом CCFL и приборы для освещения с горячим катодом. Но в чем разница, какая их маркировка и какие выбрать?

С горячим катодом

В горячие катоды генерирует электроны сам электрод с термоэлектронной эмиссией. Именно поэтому они еще называются термоэлектронными катодами. Катод обычно представляет собой электрическую нить из вольфрама или тантала. Но теперь они еще покрываются слоем эмиссионного материала, что может производить больше меньше тепла и света, тем самым увеличивая эффективность и световой поток газоразрядной лампы. В некоторых случаях, когда жужжание переменного тока является проблемой, нагреватель электрически изолирован от катода. Этот метод широко используют газоразрядные металлогалогенные лампы (hpi-t plus, deluxе, hid-8) и светильники низкого давления.

Металлогалогеновые лампыФото: металлогалогеновые лампы с горячим катодом

Источники света с горячими катодами производят значительно большее количество электронов, чем холодные катоды с той же площадью поверхности. Их используют индикаторные устройства, микроскопы, и даже такие лампы применяют для модернизации электронных пушек.

металлогалогеновые лампы вытянутой формыФото: металлогалогеновые лампы вытянутой формы с горячим катодом

С холодным катодом

С холодным катодом не производится термоэлектронная эмиссия. Высоковольтные лампы в данном случае, работают на электродах, генерирующих сильное электрическое поле (допустим, марки make), которое ионизирует газ. Поверхность внутри трубки способна производить вторичные электроны, и при этом свести их «падение» к минимуму. Некоторые трубы содержат специальное заземление, которое улучшает эмиссию электронов.

Другой метод работы холодных световых приборов основан на генерации свободных электронов без термоэлектронной эмиссии, за счет полевой электронной эмиссии. Полевая эмиссия происходит в электрических полях, которые создают очень высокое напряжение. Этот метод используется в некоторых рентгеновских трубках, микроскопах, работающих за счет электрических полей, а также его применяют газоразрядные натриевые лампы (lhp, днат 400 5, днат 70, днат 250-5, днат-70, hb4).

Термин «холодный катод» не означает, что он остается в температуре окружающей среды все время. Рабочая температура катода может увеличиваться в некоторых случаях. Например, при использовании переменного тока, из-за чего электроды поменялись местами – стали катод стал анодом. Некоторые электроны также могут вызвать локализацию тепла. Например, люминесцентные лампы: после запуска, вольфрамовая проволока холодная, лампа работает с холодным катодом и явление, описанное выше, используется для нагрева нити. Когда она достигла нужного уровня света, светильник работает нормально, как с горячим катодом. Подобное явление могут демонстрировать некоторые газоразрядные ксеноновые лампочки дрл (d2s, h5 категории d).

Ксеноновые лампыКсеноновая лампа

Холодный катод устройства требует высокого напряжения, но при этом высоковольтный источник питания не требуется. Это часто явление называется CCL инвертором. Работа инвертора заключается в создании высокого напряжения для организации начального пространственного заряда и первой электрической дуги тока в трубке. Когда это происходит, внутреннее сопротивление трубки уменьшается и увеличивает ток. Преобразователь реагирует на такие перепады, и если температура превышает норму – отключается. Чаще всего такие системы устанавливают для уличного освещения.

Ксеноновая лампа с холодным катодомКсеноновая лампа с холодным катодом

Лампы холодного излучения часто встречаются в электронных устройствах. CCFLs (с холодным катодом люминесцентные лампы) используются как диодные лампочки для компьютеров, модемов, мультиметров, газоразрядных индикаторов ин-14, ин 18 и нв 3, и прочего. Кроме того, они широко применяются в качестве ЖК-подсветки. Еще одним примером широкого использования является трубы Nixie.

Виды газоразрядных ламп

Перед тем, как купить какое-либо устройство, нужно обязательно изучить все его характеристики.

Разрядные лампы высокого давления

Эти лампы содержат сжатый газ внутри трубы, находящийся в более высоком давлении, чем атмосферное давление. Например, лампы газоразрядные высокого напряжения это – металлогалогенные (osram hqi-t 2000w/n/sn), натриевые (lu250/t/40, philips филипс son-t 1000w\220 e-40, msd 575, msd250 и gbm 150) и ртутные лампы дри или дрв (дрт-240, ml 250/е40, ).

Ртутная лампаФото: ртутная лампа

Лампы низкого давления

Эти лампы содержат газ внутри трубы, находящийся в более низком давлении, чем атмосферное. Классические люминесцентные лампы way относятся к этой категории, хорошо известные сейчас неоновые лампы, а также натриевые лампы низкого давления, которые используются для уличного освещения. Все они имеют очень хорошую эффективность, но наиболее эффективными среди всех газоразрядных ламп являются натриевые лампы son. Проблема этого типа ламп (с цоколем r7s) является то, что она производит только почти монохроматический желтый свет (исключение — бездроссельные люминесцентные лампы).

Натриевые лампыНатриевые лампы

Лампы высоко-интенсивного разряда

В этой категории, находятся лампы, которые излучают свет при помощи электрической дуги между электродами (е-27). Электроды обычно представлены вольфрамовыми электродами, которые находится внутри полупрозрачного или прозрачного материала. Есть много различных примеров HID (High Intensity) ламп, продажа которых осуществляется у нас в стране, таких как галогеновые (ipf h5 х-41, мн-кх7s-150вт, hq-т), ксеноновые дуговые, и светильники сверхвысокой производительности (UHP).

Галогеновые лампыГалогеновые лампы

Минусы в работе разрядных ламп

Любые устройства имеют свои недостатки, и газоразрядные светильники не стали исключением:

  • если напряжение сети меньше, чем 220 В (допустим, 100), то металогалогенные лампы (hmi-1200), не будут работать;
  • запрет на использование в учебных заведениях;
  • галогеновые лампы во время работы становятся слишком горячими. Они представляют определенную пожароопасность, и кроме того требуют очень щепетильного ухода – 1 капелька жира на поверхности может заставить её взорваться;
  • неоновые лампы излучают свет (особенно, если серия УФ, модель н4), который вреден для глаз при долгом контакте.

Область применения

Широкое применение получили автомобильные газоразрядные лампы высокой интенсивности – и неоновые, также для авто иногда применяется диодное освещение (их цена несколько ниже).  Разряд автомобильной фары заполнен смесью газообразного ксенона и металло-галоидных солей (как например использует Тойота Королла — d2r для toyota estima 2000, или БМВ 5, для Опеля astra j)). Света создается путем удара дуги между двумя электродами. Лампа имеет встроенный воспламенитель.

Автомобильная газоразрядная лампаАвтомобильная газоразрядная лампа

Для освещения промышленных помещений (гу-23а, лд30, тн-0, 3, гу26а), уличных площадей (olympiad 250, Сильвиана производства Украина), билбордов, фасадов зданий, также газоразрядные лампы высокого давления дневного света в квартирах и домах (гост 500-9006-083) и в ПРА.

Монтаж и схема подключения точно такие же, как и при установке простых ламп накаливания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *