Как работает коллектор солнечный: Принцип работы солнечного коллектора, как выбрать гелиосистему для дома – Солнечный коллектор для отопления дома: плюсы и минусы

Содержание

Принцип работы солнечного коллектора (в зависимости от его типа)

Принцип работы солнечных коллекторов основан на трансформации лучистой энергии солнца в тепловую энергию. Происходит это путем нагревания циркулирующего в коллекторе теплоносителя (чаще всего воды, иногда – антифриза) и последующей передачи накопленного тепла. Иными словами, солнечный коллектор работает как своего рода водонагреватель, что и определило его сферу применения (ГВС частных домов, отопление).

Общий принцип водонагрева

Существуют различные виды гелиоколлекторов, однако в водонагревательных установках все они работают по одной схеме. Солнечные лучи нагревают теплоноситель, который по тонким трубкам поступает в заполненный водой бак. Трубки с теплоносителем проходят через весь внутренний объем бака и нагревают находящуюся в нем воду. В дальнейшем эта вода расходуется на бытовые нужды (отопление, ГВС и т.д.). Температура воды в баке контролируется специальными датчиками, при ее охлаждении ниже заданного минимума автоматически включается резервный подогрев (обычно – газовый или электрокотел).

Такова общая схема работы всех солнечных водонагревательных установок. Что же касается работы плоских и вакуумных коллекторов, то, несмотря на единый принцип действия (нагрев теплоносителя от солнца и последующую отдачу тепла), в их работе много различий.

Плоские коллекторы

Плоский солнечный коллектор нагревает теплоноситель при помощи пластинчатого абсорбера. Устроен он довольно просто. По сути, это пластина теплоемкого металла, выкрашенная сверху в черный цвет специальной краской. К нижней поверхности пластины плотно прилегает (приваривается) змеевидная трубка, по которой и циркулирует жидкость.

Черная селективная краска обеспечивает максимальное поглощение солнечных лучей, причем их отражение практически равно нулю. Поглощенные лучи прогревают теплоноситель под абсорбером, он, в свою очередь, подается далее в систему. Для минимизации теплопотерь применяются теплоизоляция абсорбера от корпуса коллектора и закаленное стекло, почти не содержащее окислов железа. Оно устанавливается над абсорбером и выполняет функцию верхней крышки корпуса. Кроме того, использование подобного стекла позволяет создать своеобразный «эффект парника», что еще больше увеличивает прогрев абсорбера, а значит, и температуру теплоносителя.

Вакуумные коллекторы

Принцип работы вакуумных коллекторов иной. Объясняется это прежде всего разницей в конструкции. Главным рабочим элементом в вакуумных моделях является не пластина абсорбера, а система вакуумированных трубок и теплосборник. Причем вариантов конструкций таких трубок несколько.

Тем не менее, несмотря на конструктивные различия, общая схема действия таких трубок фактически одинакова. Стеклянная поверхность поглощает максимум солнечных лучей благодаря специальному высокоселективному покрытию. Энергия солнца нагревает внутренний теплоноситель, а вакуумная прослойка ликвидирует теплопотери, так как вакуум – лучший изолятор. Через теплосборник аккумулированное тепло поступает далее в систему и используется для нагрева воды в баке-накопителе.

В целом коллектор этого типа обеспечивает более высокую производительность по сравнению с плоским аналогом.

Вакуумные трубки

Устройство классической вакуумированной трубки довольно просто. Она представляет собой двухстенную стеклянную колбу, между стенками которой создан вакуум. Внутри расположен медный сердечник (тепловой канал). Такая трубка называется «коаксиальной». Еще один вид — так называемые «перьевые трубки», одностенные колбы с вакуумом в самом тепловом канале.

Принцип работы вакуумной трубки зависит от особенностей строения ее теплового канала и от типа самой колбы. Каналы же, как и колбы, бывают двух видов, прямоточные и типа heat pipe.

Действие прямоточных каналов основано на непосредственном протекании теплоносителя через U-образную медную трубку. Охлажденная жидкость попадает в трубку из теплосборника, проходит через нее, нагревается и возвращается в теплосборник. Там она отдает накопленное тепло основному теплоносителю и возвращается в трубку.

Трубка heat pipe работает несколько иначе. Принцип ее работы основан на переносе тепла посредством легко испаряющейся жидкости, заключенной в тепловом канале. Сам канал (трубка) выполняется из теплоемкого металла (алюминий, медь). Солнечный свет нагревает жидкость, она испаряется из нижнего конца трубки и конденсируется в теплосборнике. Конденсат стекает вниз, где его вновь разогревает солнечный свет. Основной теплоноситель забирает тепло из теплосборника и передает его через коллектор дальше в систему.

Теплосборник

Помимо трубок, вакуумный солнечный коллектор оснащен теплосборником, которые необходим для передачи тепла от трубок к теплоносителю. Размещается теплосборник в верхней части агрегата. Принцип его работы следующий. Медный сердечник передает накопленную энергию основному теплоносителю, циркулирующему в замкнутом круге «теплообменник бака – коллектор». Циркуляцию обеспечивает специальный небольшой насос. Причем если температура теплоносителя упадет ниже определенного минимума (например, ночью), то управляющая автоматика водонагревательной системы отключит насос. Таким образом предотвращается обратный прогрев, при котором теплоноситель будет забирать тепло горячей воды в накопительном баке.

Воздушные коллекторы

Солнечный коллектор воздушного типа гораздо менее распространен. Применяется он не для подогрева воды, а для нагрева и кондиционирования воздуха. Роль теплоносителя в нем играет собственно воздух, нагреваемый солнечными лучами. По сути, данный коллектор представляет собой ребристую металлическую панель, выкрашенную в черный цвет. Принцип работы его основан на естественной или принудительной подаче в помещения воздуха, который прогревается под панелью под действием солнечных лучей.

Солнечный коллектор зимой. Эффективность использования плоского и вакуумного коллектора зимой.

В этой статье: Работает ли зимой солнечный коллектор? Сравнение эффективности работы зимой вакуумного и плоского солнечного коллектора. Плюсы и минусы гелиосистемы. Отзыв владельца. Видео по теме.

Солнечный коллектор зимой.

Эффективность использования плоского и вакуумного коллектора зимой.

В последнее время альтернативные источники энергии вызывают все более живой интерес со стороны наших соотечественников. Наиболее простыми из них в устройстве являются солнечные коллекторы, благодаря чему их доля в нетрадиционной энергетике, особенно бытовой, чрезвычайно велика. Данная статья поможет найти ответ на вопрос: насколько эффективным является солнечный коллектор зимой?

Работает ли зимой солнечный коллектор?

Как свидетельствует статистика (данные приведены в Википедии), на 1 тыс. россиян приходится примерно 0,2 кв. м применяемых у нас солнечных коллекторов, тогда как в Германии этот показатель составляет 140 кв. м, а в Австрии – целых 450 кв. м. на 1 тыс. жителей.

Столь значительную разницу нельзя объяснить одними только климатическими условиями. Ведь на большей части России за день поверхности земли достигает такое же количество солнечной энергии, как и на юге Германии – в теплое время эта величина составляет от 4 до 5 кВт*ч/кв. м.

Чем же вызвано наше отставание? Отчасти оно обусловлено сравнительно низкими доходами россиян (гелиоустановки являются пока довольно дорогим удовольствием), отчасти – наличием собственных крупных газовых месторождений и, как следствие, доступностью голубого топлива.

Но немалую роль сыграло и предвзятое отношение со стороны многих потенциальных пользователей, считающих установку солнечного коллектора нецелесообразной. Дескать, летом и так тепло, а зимой от подобной системы мало проку.

Вот какие аргументы выдвигают скептики касательно эксплуатации гелиоустановок зимой:

  1. Установку постоянно засыпает снегом, так что солнечное излучение достигает её не так уж часто. Если, конечно, владелец не дежурит постоянно на крыше с веником или щеткой.

  2. Холодный морозный воздух отбирает почти все тепло, накапливаемое коллектором.

  3. Часто упоминают и всесезонный поражающий фактор – град, который может разнести гелиоустановку вдребезги.

Чтобы понять, насколько справедливы эти доводы, рассмотрим устройство различных видов солнечных коллекторов.

Устройство и область применения в быту.

На сегодняшний день наибольшее распространение нашли плоские и вакуумные солнечные коллекторы.

Плоские солнечные коллекторы

Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя.

Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметикой.

При отсутствии забора тепла (застое) плоские коллекторы способны нагреть теплоноситель до 190—210°C. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4 % (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение «запаса мощности» по теплопередаче), что незначительно в сравнении с ценой). Также высокая эффективность достигается увеличением площади контакта трубки и медного листа: у формованного листа и паянного соединение она максимальна, у соединения ультразвуковой сваркой — меньше. Используется также алюминиевый экран.

Вакуумные солнечные коллекторы.

Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

Фактически солнечная вакуумная труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.

Кроме того, в вакуумных солнечных коллекторах нашли применение медные тепловые трубки, выполняющие роль проводника тепла. При воздействии на коллектор солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору.

Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

Видео сравнение работы плоского и вакуумного коллектора зимой

В быту гелиоустановки применяются для приготовления горячей воды, в том числе для бань, подогрева бассейна либо в качестве дополнительного источника тепла для системы отопления.

В промышленности сфера применения таких систем является более широкой: на их основе сооружают опреснители воды, парогенераторы (пар приводит в движение различные машины) и даже электростанции.

Эффективность зимой

Эффективно ли отопление дома солнечными коллекторами зимой? Ну что же, теперь посмотрим, как различные виды солнечных коллекторов работают в условиях зимы. Напомним, что противники внедрения таких установок выдвигают следующие аргументы:

Засыпание панели снегом: данная проблема актуальна только для плоско-пластинчатых коллекторов. На трубках вакуумных установок, как показала практика, снег задерживается только в тех редких случаях, когда в силу особых погодных условий на их поверхности образуется изморозь. Если же во время снегопада дует хотя бы слабый ветер (от 3 м/с), панель точно останется чистой.

Из-за того, что коллектор окружен холодным воздухом, все тепло с коллектора улетучивается: этот аргумент опять же справедлив только в отношении плоско-пластинчатых коллекторов. Действительно, зимой производительность такой установки в сравнении с летней уменьшается пятикратно. В более совершенных вакуумных моделях прослойка вакуума позволяет сберечь до 95% усвоенного тепла. Самые современные модели даже в сильный мороз способны довести воду до кипения.

Коллектор легко может быть поврежден градом: в заводских условиях коллекторы изготавливаются из высокопрочных материалов. Посмотрите видеоролик, снятый во время испытаний вакуумной трубки на ударную прочность.

Видео. Испытание солнечного коллектора на прочность.

Трубка выполнена из чрезвычайно крепкого боросиликатного стекла которое выдерживает удары града который падает со скоростью 18 м/с и имеет 35 мм диаметре.

  Как видно, солнечные коллекторы зимой вполне работоспособны. Хотя, конечно, производительность их в сравнении с летним периодом ощутимо снижается.  

Плюсы и минусы гелиосистемы

 Им присущ более высокий КПД по сравнению с фотоэлектрическими элементами и ветрогенераторами.

 Усваиваемая с их помощью энергия является абсолютно бесплатной.

 Работа солнечного коллектора полностью безвредна для экологии: используемый ресурс – солнечное тепло — является неисчерпаемым и усваивается напрямую, без сжигания чего-либо и загрязнения окружающей среды.

 Теперь укажем слабые места гелиоустановок:

  • Коллекторы стоят пока сравнительно дорого

  • Из-за переменчивости погодных условий производительность коллектора не стабильна.

  • Систему приходится оснащать довольно вместительным баком-накопителем с хорошей теплоизоляцией.

Отзыв владельца о работе солнечного коллектора зимой.

Видео о работе солнечной сплит-системы SH-200-24 торговой марки «АНДИ Групп»

Предлагаем Вашему вниманию всесезонные солнечные коллекторы торговой марки АНДИ Групп

Солнечная сплит-система ЭЛИТ

Система на основе вакумного солнечного коллектора: (объём бака от 200 до 1000л)

 

Солнечная сплит-система СТАНДАРТ

Система на основе вакумного солнечного коллектора: (объём бака от 100 до 500л)

 

Солнечный вакуумный коллектор ПАНЕЛЬ

Количество трубок в коллекторе: 12,15,18,20,24,30 (в зависимости о модели)

 

Солнечный коллектор УНИВЕРСАЛ

Количество трубок в коллекторе: 15,20,24,30 (в зависимости о модели)

   Остались вопросы? Напишите нам!

Принцип работы воздушного солнечного коллектора

Воздушный солнечный коллектор – оборудование для вентиляции и отопления строений различного назначения, работающее исключительно на солнечной энергии. Воздушные солнечные коллекторы Solar Fox делятся на два типа по своему назначению: для отопления и вентиляции (комплектующие для обоих типов входят в набор каждого коллектора). Но при этом устройства солнечной вентиляции и солнечного отопления незначительно отличаются принципом работы и спецификой монтажа.

Оглавление

  1. Как работают приборы Solar Fox для отопления
  2. Как работают солнечные устройства для вентиляции
  3. Задачи, которые решают воздушные солнечные коллекторы

Как работает солнечный коллектор Solar Fox при отоплении

как работает воздушный солнечный коллектор

Как работают приборы солнечного отопления?

  1. При попадании солнечных лучей на лицевую сторону коллектора, гелиоколлектор нагревается.
  2. Солнечная панель вырабатывает ток и запускает вентилятор.
  3. Через входные отверстия в коллектор из помещения втягивается воздух.
  4. Воздух прогревается в гелиоколлекторе, его температура при этом поднимается на 10-40ºС.
  5. Вентилятор нагнетает прогретый воздух в комнаты.
  6. Разогретые воздушные массы вытесняют холодный воздух, который отводится через естественные зазоры или вытяжное отверстие.

Механический выключатель дает возможность отключать устройство, если отопление помещений не требуется. Обратный клапан, входящий в комплектацию коллектора, не позволяет теплым воздушным массам покидать помещение.
Как работают приборы солнечного отопления, зависит от соблюдения рекомендаций по расположению устройств.

При выборе места расположения учитывается количество падающей тени. Оптимальное положение для крепления коллектора – южная стена. Допустим монтаж на юго-восточной или юго-западной стороне. Рекомендуется горизонтальное расположение коллектора, но возможно и вертикальное размещение устройства.

Как работает вентиляция солнечными коллекторами Solar Fox

принцип действия солнечного коллетора

Как работают устройства солнечной вентиляции?

  1. Солнечные лучи попадают на лицевую сторону коллектора, гелиоприемник нагревается.
  2. Солнечная панель вырабатывает ток, включается вентилятор, который забирает воздух с улицы, через специальное отверстие. Внутри коллектора установлен фильтр, который дополнительно очищает воздух.
  3. Воздух прогревается в гелиоприемнике и нагнетается внутрь помещения.
  4. Возникает принудительная циркуляция воздушных масс в комнатах, за счет чего углекислый газ удаляется через естественные щели или специально предусмотренное выходное отверстие.

Существует несколько схем крепления воздушных солнечных коллекторов. Устройство можно разместить на стене или крыше. Схема крепления выбирается, исходя из характеристик объекта и пожеланий клиента. В любом случае обеспечивается качественное вентилирование и дополнительный прогрев помещений.

Задачи, которые решает солнечный коллектор

Воздушный солнечный коллектор подбирается исходя из целей клиента и площади дома. Многообразие отопительных и вентиляционных моделей позволяет найти эффективное решение для:

  1. Жилых построек: домов, дач, загородных коттеджей сезонного или постоянного проживания, времянок.
  2. Хозяйственных помещений: гаражей, бань, подвалов, чердаков, погребов, складов, ангаров, овощехранилищ.
  3. Объектов специального назначения: оранжерей, питомников, теплиц.

Принцип действия воздушных солнечных коллекторов прост и понятен, при этом устройства способны заменить традиционное электрическое оборудование: кондиционеры, конвекторы, осушители воздуха (зависит от типа помещения). С помощью коллекторов с успехом решаются следующие задачи:

Установление в помещении здорового микроклимата: поддержание оптимального температурно-влажностного режима, комфортного для человека, животных, растений.
Создание дополнительного отопления, в том числе в домах временного проживания, на сезонных объектах, не электрифицированных зданиях.
Полноценный воздухообмен и вентилирование: постоянный приток свежего, чистого и теплого воздуха и удаление углекислого газа, неприятных запахов, застоявшихся воздушных масс.

Как работает вакуумный солнечный коллектор

Коэффициент полезного действия такого типа коллекторов, при обеспечении высокой степени вакуума, составит около 98%. Как правило, установка солнечных вакуумных коллекторов производится на крыше объекта, что позволяет максимально полезно использовать ее площадь. Угол монтажа коллектора выбирается производно в диапазоне от 5 до 90 градусов. Минимальные значения угла наклона солнечного коллектора позволяют обеспечить циркуляцию теплоносителя. Срок использования вакуумных солнечных батарей достаточно высок и составляет более 20 лет. Вариантов у потребителя несколько: можно вакуумный солнечный коллектор купить либо изготовить своими руками. Цена вакуумных солнечных батарей вполне доступна, таким образом использование таких систем весьма целесообразно.

Конструкция и принцип работы вакуумного солнечного коллектора

Предназначение плоского вакуумного солнечного коллектора заключается в обеспечении аккумулирования солнечной энергии при любых погодных условиях и температуре окружающей среды.

Содержание:

  1. Как работает солнечный вакуумный коллектор
  2. Конструкция солнечного вакуумного коллектора
  3. Виды гелиосистем

Как работает коллектор?

  • Одним из важнейших элементов конструкции является автоматизированный резервуар-теплообменник, способный преобразовывать, поддерживать и сохранять тепло, полученное при накоплении солнечной энергии, а также и от дополнительных источников энергии, которые используются для подстраховки работоспособности системы отопления в целом.
  • Вода, нагретая до определенной температуры, из теплообменника, расположенного во внутреннем блоке, подается в радиаторы, использующиеся для системы отопления, при этом вода, находящаяся в резервуаре, поступает в бак для поддержания ГВС.
  • Для контроля значений рабочей температуры блоков и выбора требуемого режима работы системы установлен блок управления. Он отвечает за поток энергии теплового носителя через теплообменник и определяет куда именно стоит направить тепло: на водоснабжение либо отопление.
  • В ночное время суток автоматика поддерживает минимальные параметры работы системы и поддерживает значения установленной температуры.
  • Основное преимущество использования вакуумных солнечных коллекторов для отопления дома — это их малая инерционность. При этом их использование позволяет обеспечивать горячее водоснабжение в течение года и отопление в холодный период, позволяющее экономить традиционно использующиеся источники получения тепловой энергии.

Схема и конструкция солнечного коллектора

вакуумный солнечный коллектор — схема и принцип работы

Основные блоки вакуумного коллектора: непосредственно вакуумный коллектор, резервуар-теплообменник и системный контроллер солнечных систем нагрева воды. Конструктивно вакуумный коллектор выполнен в виде трубчатых профилей, соединенных параллельными рядами. Как правило используются трубы конструкции ”стекло-стекло”, произведенные из боросиликатного стекла. Для покрытия внутренней трубы используется селективный слой, предназначенный для абсорбции солнечной энергии и устранения тепловых потерь. Функциональность таких труб позволяет их использовать при пасмурной погоде. При отрицательных температурах происходит преобразование в тепло как прямых, так и рассеянных солнечных лучей. Также для образования тепла используется природное ИК-излучение. Конструкция вакуумной трубы реализована по принципу термоса: она изготовлена из двух трубок различного диаметра, между которыми поддерживается вакуум. Вакуум обладает фактически нулевой теплопроводностью и обеспечивает высокий уровень термоизоляции.

  • Вакуумные трубы во всесезонных системах имеют дополнительные термотрубки или тепловые трубки. Они представляются собой медные трубки, наполненные жидкостью с низкой температурой кипения. При непосредственном воздействием тепла происходит испарение жидкости. При этом забирается тепло самой трубки. Далее пар поднимается в расположенный выше наконечник, где происходит его конденсация и передача тепла тепловому носителю в основном контуре либо специальной жидкости, находящейся в отопительном контуре. Далее конденсат по стенкам стекает вниз и процесс возобновляется.
как работает солнечный коллектор
  • Приемник коллектора как правило изготавливается из меди. При этом чаще всего применяется дополнительная полиуретановая изоляция. Приемник закрыт истом нержавеющего покрытия для дополнительной защиты. Передача тепла осуществляется посредством медной «гильзы» приемника. Отопительный контур отделяется от блока трубок, что позволяет поддерживать работу системы при поломке одной или нескольких трубок. Замена поврежденных трубок производится без слива используемой жидкости из рабочего контура.
  • Резервуар-теплообменник выполняет функции бойлера и используется для аккумулирования и сохранения тепла. Резервуар, как правило, имеет внутри конструкции одну либо две спирали для теплообмена.
  • Типичная конструкция системы как правило включает насос, манометр и клапан давления, кран для регулирования количества воды, различные соединительные механизмы и вентили, в том числе набор, обеспечивающий безопасное подсоединение резервуара к отопительной системе, вентиль безопасности давления в 6 атм. Бак дополнительно может быть оснащен электрическим нагревателем мощностью 1-3 кВт.
  • Если требуется обеспечить единовременную подачу горячего водоснабжения и отопления, происходит распределение аккумулированной солнечной энергии. Когда заданное значение температуры достигается, подача тепла автоматически переводится на контур отопления. Настройки перераспределения тепла могут быть изменены в зависимости от времени года либо климатической зоны. К данной системе отопления могут быть подсоединены дополнительные отопительные приборы.
  • Контроллер водонагревательных систем используется для задания значений температуры в резервуаре теплообменника и коллекторе, а также определения требуемого режима работы вакуумного солнечного коллектора согласно полученным данным.
  • Основные функции контроллера заключаются в следующем: индикация температуры в основных блоках: коллекторе, резервуаре, индикация значения температуры в обратном потоке теплоносителя, задание температуры запуска, при которой используется принудительная циркуляция в теплоносителе, таймер пуска и остановки всей системы отопления, определение температуры и продолжительности работы функции дополнительного подогрева, задание минимального значения температуры, индикация датчиков, имеющих повреждения.

Типы гелиосистем

Выделяют два основных типа гелиосистем: сезонные, всесезонные или круглогодичные.

Вакуумные солнечные батареи, сконструированные на базе технологии прямой теплопередачи, относятся к сезонным системам. Принцип действия таких систем достаточно прост: вода из бака поступает в соединенные медные трубки, где нагревается и затем возвращается в контур.

Тепло в таком типе солнечных батарей передается воде без использования в работе дополнительных элементов и блоков. При этом требуется большой объем воды в контуре теплообменника (от 60 до 200 л). Основными преимуществами сезонных систем являются низкая стоимость при высоком КПД, составляющий до 98%. Это конечно при условии использования и покупки селективного покрытия для солнечных коллекторов.

К круглогодичным системам относят вакуумные солнечные батареи, в которых дополнительно установлены термотрубки. Принцип работы таких коллекторов схож с работой установок центрального отопления. Через коллектор и змеевик протекает специальная жидкость («незамерзайка»). Эта жидкость предназначена для забора тепла из медных трубок. Далее она поступает в бак, аккумулирующий тепло для непосредственного нагрева воды через змеевик. Процесс протекает до тех пор, пока значения температуры бака и теплового приемника не сравняются. Насос контролируется электроникой, датчики температуры при этом устанавливаются как в коллекторе, так и в баке-аккумуляторе. Давление в системе может быть выше требуемых значений при недостатке потребления воды. Расширительный бак также позволяет избежать подобных ситуаций.

Области применения гелиосистем многогранны и включают: обеспечение жилых помещений, социальных и культурных объектов горячим водоснабжением и отоплением. При этом экономия ресурсов достигает 50%. Используются в сочетании с «теплыми полами». Если вам требуется обеспечить ваш дом теплом, то вы можете купить вакуумный солнечный коллектор, либо сделать его своими руками. Стоимость вакуумных коллекторов для отопления дома достаточна высока, но продуктивность и энергоемкость таких систем компенсирует материальные издержки. При этом следует учитывать, что надежность коллектора, собранного и установленного профессионалами выше, чем у самодельного.

Принцип работы солнечного коллектора-водонагревателя

Принцип работы солнечного водонагревателя базируется на сборе тепловой энергии Солнца, которая переносится инфракрасным и видимым излучением. Это устройство используется непосредственно для нагрева теплоносителя (воды), а не выработки электрической энергии, как у солнечных батарей.

Коллектор может использоваться для подогрева воды, отопления, а некоторые разновидности устройств – для опреснения соленой воды и производства электроэнергии.

Принцип работы

Существует несколько разновидностей солнечных коллекторов. Два основных вида – плоский и вакуумный. Особенности функционирования каждого из них описаны ниже. В целом же принцип работы устройства довольно простой – солнечные лучи разогревают воду, которая затем подается в накопительный бак или систему отопления.​

Основные элементы устройства:

  • Поглощающая поверхность. Изготавливается из материалов, которые хорошо поглощают солнечную энергию с минимальными потерями. Современные материалы позволяют накапливать тепло даже в пасмурную погоду.
  • Трубки для передачи теплоносителя (горячая вода). Обычно изготавливаются из меди или сшитого полипропилена.
  • Теплоизоляционный материал. Им покрывают плоскую поглощающую поверхность, чтобы предотвратить охлаждение воды. В вакуумных коллекторах слой изоляции не требуется.
  • Накопительный бак для сбора горячей воды. Он также покрывается теплоизоляцией, иначе потери тепла будут очень большими. В бак может быть встроен дополнительный нагреватель. Если коллектор используется одновременно для нагрева воды и отопления, тепловая энергия распределяется равномерно между баком и системой отопления.
  • Контроллер. Устройство для управления всей системой. Контроллер автоматически включает дополнительный подогрев воды (если есть газовая горелка или электрический тэн) при ее охлаждении до определенного уровня, закрывает и открывает клапан бака, выбирает оптимальный режим работы для дня и ночи и т.д.

Также в комплект могут входить различные дополнительные элементы:

Плоский коллектор

Представляет собой герметичную пластину, в которой размещены все детали. Главный элемент конструкции – плоский абсорбер (поглощающая поверхность для сбора солнечной энергии). С одной стороны пластина покрыта стеклом с пониженным содержанием металлов, а с другой – слоем теплоизоляции. Чтобы повысить эффективность абсорбции, пластину под стеклом покрывают черной краской или специальным покрытием на основе оксида титана.

Внутри пластины находится система трубок из меди или сшитого полиэтилена. Про трубкам циркулирует теплоноситель, подводится холодная жидкость и отводится нагретая.

Для повышения эффективности работы используются специальные дополнительные покрытия. Например, это алюминиевый экран или листовая медь. В России такие дополнительные покрытия необходимы даже в южных регионах.

Если вода не движется по трубкам, она может нагреваться до 210 °C. Принцип работы такого устройства основан на парниковом эффекте. Солнечные лучи проникают через внешнее покрытие, нагревают теплоноситель и задерживаются в пластине. В результате излучать тепло начинает она сама.

Основные преимущества плоского коллектора:

  • Легко самоочищаются от снега, инея, грязи.
  • Относительная дешевизна базового комплекта.
  • Отличное соотношение цены/количества энергии для регионов с теплым климатом.
  • Установка под любым углом.

Вакуумный коллектор

Представляет собой ряд вакуумных тепловых трубок, закрепленных на алюминиевой раме параллельно друг другу.

Конструкция трубки похожа на термос. Во внутренней трубке находится теплоноситель. Между ней и внешней трубкой воздух откачан и создается вакуум. Именно он и препятствует охлаждению разогретой жидкости. Благодаря ему сохраняется до 95% аккумулированной энергии.

Трубки расположены под наклоном. Под воздействием солнечных лучей нетоксичная жидкость в нижней части трубки нагревается и поднимается вверх. Там пар конденсируется, отдавая тепло антифризу. Он протекает дальше по системе трубок и нагревает воду. Охлажденная жидкость опускается в нижнюю часть трубки, где снова нагревается и цикл повторяется.

Основные преимущества вакуумного коллектора:

  • Эффективная работа при температуре до -30 °C и в пасмурную погоду.
  • Отличное соотношение цены/количества энергии для холодных регионов.
  • Низкая парусность.
  • Низкие теплопотери.
  • Простой монтаж.

Особенности установки

Плоские коллекторы могут устанавливаться практически под любым углом, а вакуумные – под углом не менее 20 градусов. Принимается во внимание угол падения солнечных лучей. Для максимальной эффективности работы всей системы лучи должны падать на коллектор перпендикулярно.

Советы по установке:

  1. Для северного полушария лучше всего ориентировать адсорбирующую поверхность на юг. Если нельзя этого сделать, нужно выбрать запад или восток.
  2. До заполнения системы теплоносителем необходимо затенять адсорбирующую поверхность, чтобы не допустить перегрева. Для предотвращения теплового удара теплоносителем заполняют только холодный коллектор.
  3. Для обвязки нельзя использовать стальные трубы с цинковым покрытием или обычные пластиковые. Солнечный коллектор работает постоянно, выключить его нельзя. При малом водоразборе жидкость может прогреваться до 200-300 °C. Для работы с настолько горячей жидкостью подходят трубы из нержавеющей стали или меди.
  4. Материал крепежа и теплоизоляции, которые будут соприкасаться с горячим контуром, также должен выдерживать перепады температур.
  5. На скатной крыше коллектор обычно устанавливают параллельно кровле. При этом место установки не должно закрываться тенью в любое время суток. На плоской крыше используются подпорки.
  6. Плоские коллекторы не устанавливают в горизонтальном положении. Они обязательно должны быть расположены под наклоном. Вакуумные коллекторы допустимо устанавливать горизонтально, если не предусматривается длительных фаз стагнации (отбора нагретой воды).
  7. Коллекторы, которые должны быть встроены в кровлю, не устанавливаются горизонтально на крыше, вертикально на стене или где-то еще.
  8. Плоский коллектор имеет высокую парусность, поэтому при монтаже необходимо учитывать силу и направление ветра.

Солнечный коллектор зимой — Есть ли толк? (Оценка эффективности)

18.10.2019

Содержание:

  1. Как обеспечить нагрев воды от солнца в зимний период
    1. Стоит ли использовать солнечное отопление зимой
    2. Снег и солнечные коллекторы: отзывы, воздействие
    3. Может ли град повредить солнечные коллекторы зимой
    4. Как работает солнечный коллектор в мороз
    5. Нужен ли водонагреватель от солнца зимой?
    6. Отопление солнечными коллекторами: зарубежный опыт
  2. Как работает отопление дома солнцем в зимний период
    1. Насколько эффективен подогрев воды солнечной энергией зимой
  3. Так есть ли смысл покупать солнечный коллектор на зиму?

 

Постоянно растущая стоимость отопления в зимний период заставляет многих домовладельцев искать альтернативный источники энергии для горячего водоснабжения и отопительных систем. Для этой цели подходят твердотопливные котлы и тепловые насосы, но первым требуется топливо, а вторым электроэнергия, что не позволяет создать полностью автономную сеть обогрева воды. Есть ли третий вариант? 

солнечный коллекторКак обеспечить нагрев воды от солнца в зимний период

Наиболее экологически чистую и полностью бесплатную тепловую энергию обеспечивают солнечные коллекторы. Но у многих возникает вопрос, насколько эффективно отопление от солнца зимой и не возникнет ли с гелиоколлектором дополнительных проблем в наших климатических условиях? Разберем этот вопрос подробнее. 

Стоит ли использовать солнечное отопление зимой

Гелиосистемы, как и солнечные батареи работают за счет энергии солнечного света, поэтому монтируются на улице, в местах прямого (или почти прямого) падения лучей. Однако если на фотоэлектрическую трансформацию температура и окружающая среда практически не оказывают воздействия, то с солнечными коллекторами возможен ряд проблем. Больше всего покупателей беспокоят вопросы:

  • Снега;
  • Града;
  • Мороза. 

Развеем несколько мифов, касающихся влияния этих факторов на эффективность гелиоколлектора. 

Снег и солнечные коллекторы: отзывы, воздействие

Снег является основным врагом гелиосистем, поскольку преграждает доступ солнечных лучей к поверхности коллектора, из-за чего эффективность последнего значительно снижается. Как у вакуумных, так и у плоских моделей наблюдается падение производимой мощности от 3 до 5 раз, в зависимости от толщины снежного покрытия. 

Однако тут нужно добавить, что трубчатые коллекторы при небольших снегопадах и в условиях отсутствия мороза быстро самоочищаются за счет своей формы. Но наиболее эффективно противостоят снегу плоские модели, поскольку: 

  • Основная теплопотеря системы происходит через верхнюю панель и во время работы коллектор как-бы непроизвольно подогревает снежный пласт над собой;
  • В некоторых плоских моделях есть функция оттаивания, которая переводит часть аккумулированного тепла на повышение температуры верхней панели, что приводит к тому же результату, только быстрее. 

Да, снег сильно снижает КПД гелиосистем, но инженеры вводят всё новые способы решения этой проблемы. 

солнечные коллекторы зимойМожет ли град повредить солнечные коллекторы зимой

Опасения по-поводу града напрасны для владельцев качественных трубчатых и плоских коллекторов, так как:

  • Качественные трубки производятся из закаленного стекла (в некоторых случаях — с дополнительным усилением), прочность которого на порядок выше, чем обычного;
  • Прозрачные панели плоских моделей делаются из армированного стекла или композитных материалов — пластика, стеклопластика (конкретные параметры защиты зависят от производителя).

Такие системы могут легко выдержать град различной интенсивности и величины, вплоть до среднего диаметра осадков 3-5 см. Многие производители демонстрируют видео обстрела своих коллекторов металлическими или каменными шариками, имитирующими град в качестве доказательства прочности. 

Как работает солнечный коллектор в мороз

Вторым серьезным фактором, влияющим на КПД гелиосистем является температура окружающей среды, но снижение эффективности в мороз характерно только для плоских коллекторов. Это вызвано тем, что сеть трубок с теплоагентом контактирует с внешней панелью, через которую уходит тепло. Чтобы снизить этот эффект, многие производители начали устанавливать изоляционный слой между прозрачной панелью и трубками. 

В трубчатых, между трубкой с теплоагентом и внешним прозрачным кожухом образовывается вакуум, который является плохим проводником тепла. Поэтому трубчатые модели демонстрируют минимум теплопотерь даже в мороз

Тут стоит отметить, что мороз может сыграть злую шутку с трубчатыми коллекторами при повышенной влажности и затянуть внешний стеклянный кожух изморозью, а это снизит число проникающих солнечных лучей. Но опасаться подобных ситуаций не стоит, поскольку: 

  1. Прозрачность изморози на несколько порядков выше, чем снега и она очень несущественно влияет на производительность.
  2. Изморозь уходит за несколько часов солнечной погоды, поэтому если на небосводе появится яркое солнце — оно быстро ее растопит, а если солнца нет, то КПД коллектора снизится вне зависимости от намерзшего слоя. 

 

 

 

В нашем каталоге более 50 моделей солнечных водонагревателей

 

 

 

Нужен ли водонагреватель от солнца зимой?

гелиоколлекторЕсли резюмировать влияние погодных факторов в условиях нашего климатического пояса: 

  • Количество солнечных дней зимой резко снижается;
  • Поверхность коллектора может покрываться снегом или изморозью; 
  • Плоские модели будут отдавать существенную часть тепла через внешние панели, особенно при сильных морозах.

Однако в холодное время года, можем отметить, что:

  • Коллекторы легко переносят перепады температур и осадки;
  • Их сложно повредить градом или льдом;
  • За полученное тепло не нужно платить;
  • При достаточном количестве солнца, КПД системы падает незначительно.

Если учесть, что у плоских коллекторов есть механизм для самоочищения от снега, то на их КПД влияет только количество солнечных дней и температура окружающей среды. В целом такая система будет выполнять нагрев воды солнцем, но ее эффективность в зимнее время падает в 3-4 раза.

Если для горячего водоснабжения можно рассчитать необходимый запас мощности и установить дополнительные модели, то применение солнечных нагревателей в отопительных системах возможно только в качестве дополнительного источника подогрева воды. 

Отопление солнечными коллекторами: зарубежный опыт

В странах Западной Европы, в частности Швейцарии и Германии (в регионах, расположенных примерно в той же широте, что и Украина) научились минимизировать падение КПД на отопительную систему дома за счет предварительного накапливания энергии. 

Эта технология используется в хорошо утепленных домах с предварительным инженерным планированием и предусматривает:

  • Монтаж в стенах и под полом системы отопительных труб;
  • Установку сети солнечных коллекторов и солнечных батарей;
  • Установку резервуара с большим водоизмещением (42 тонны или больше) на чердаке.

Дальше в межсезонный период, когда температура только начинает падать, а отопление еще не работает (август-сентябрь) система направляет всю энергию на подогрев воды в резервуаре до максимально возможной температуры. В дальнейшем эта вода будет использоваться для поддержания стабильной работы отопительной сети в пасмурные и холодные дни, когда эффективность коллекторов падает. 

Такая технология не является панацеей от падения КПД, но существенно продлевает срок автономной работы отопления и снижает расходы владельца. Правда, обходится такое оборудование недешево и в Украине подобные проекты пока не реализовывались. 

Как работает отопление дома солнцем в зимний период 

солнечные коллекторы на крыше домаСолнечный водонагреватель зимой тоже используется для отопления дома (для этого даже разработаны специальные модели с незамерзающим теплоагентом). Это обусловлено процессом преобразования солнечной энергии в тепловую, включающим несколько этапов:

  1. Солнечные лучи проходят через внешнюю прозрачную панель/трубку и попадают на покрытие-абсорбатор;
  2. Абсорбатор активно вбирает прямые и рассеянные солнечные лучи даже в облачную погоду и передает преобразованное тепло на трубку с теплоагентом;
  3. Теплоагент (во всесезонных моделях — незамерзающий) закипает и проходит по змеевику в расширительный бак системы;
  4. В баке он передает полученное от абсорбера тепло воде и конденсируется, возвращаясь по змеевику в трубку под абсорбером.
  5. Цикл повторяется. 

Как можно видеть, этот механизм не зависит от температуры окружающей среды, поэтому может использоваться даже в холодное время года. На эффективность системы влияет количество и продолжительность солнечных дней, а в нашем климатическом поясе эти показатели хоть и сокращаются, но не падают до нуля, поэтому даже самой холодной зимой коллекторы будут работать (пусть и с пониженным КПД).

Насколько эффективен подогрев воды солнечной энергией зимой

Мощность работы солнечного коллектора рассчитывается в Вт на м² и напрямую зависит от солнечной активности в регионе и КПД самого устройства. Соответственно мощность вычисляется по формуле: м = а*к/100.

Где:

  • м — мощность;
  • а — солнечная активность;
  • к — коэффициент полезного действия. 

Количество солнечной энергии в широтах Украины составляет 1000-1200 Вт на м². Узнать КПД коллектора можно из его технического паспорта (хотя нужно учитывать, что фактический может отличаться от номинального). 

Если у нас есть плоский коллектор с КПД в 80%, то его мощность = 1200*80/100, то есть 960 Вт на м² площади. 

Так вот в зимний период (в зависимости от региона и погодных условий) из-за облачности и осадков солнечная активность над территорией Украины падает от 3 до 5 раз, то есть до 400-250 Вт. При таких условиях мощность того же коллектора будет составлять 360-200 Вт на м². И это при отсутствии длительного снежного покрова на поверхности коллектора. 

Фактически для бесперебойной работы системы зимой владельцу нужно обеспечить пятикратный запас мощности, что затруднительно, учитывая общую площадь и стоимость такого гелиоколлектора. 

Так есть ли смысл покупать солнечный коллектор на зиму?

солнечный коллектор на крышеУчитывая вышеизложенное, можем сделать вывод, что гелиоколлекторы хоть технически и способны работать в условиях зимы в нашем регионе, без существенных проблем для владельца, но не выдают достаточный КПД для полноценного отопления или обеспечения дома горячей водой. 

Это не значит, что солнечный водонагреватель бесполезен — летом такая установка может полностью нагреть воду солнцем, покрыть теплопотребности дома, а в зимнее время стать дополнительным источником энергии, снижая общую нагрузку на основную теплосеть. Эффективно обеспечить домохозяйство горячей водой для потребления и отопления в зимний период могут другие источники альтернативной энергии:

  • Тепловой насос;
  • Твердотопливный котел.

Подключение любого из них к сети, совместно с солнечным коллектором позволит существенно сэкономить на твердом топливе или электричестве, а в летний период установки можно полностью отключить, перейдя на полностью бесплатную энергию солнца.

 

 

 

Хотите узнать все тонкости выбора твердотопливного котла?

 

 

 

Как работает солнечный коллектор зимой в пасмурные дни, покрытый снегом и льдом

Обогрев зимой коллекторами

С удорожанием природных ресурсов, используемых на освещение и обогрев дома, всё чаще приходится искать им замену – появляются альтернативные источники. Одним из таких вариантов для отопления домов стали солнечные коллекторы.

Обогрев зимой коллекторами

Их работа основана на поглощении излучения солнца и переработки её в тепло. Использование их летом в ясную погоду понятно. А как работает солнечный коллектор зимой, давайте попробуем разобраться вместе.

Разновидности коллекторов

Особой популярностью пользуются два вида батарей: плоские пластинчатые и вакуумные.

Плоский пластинчатый коллектор

Плоский коллектор

Устройство состоит из пластины (абсорбера), которая улавливает излучение, прозрачного покрытия, пропускающего свет, и теплоизоляционного слоя. Лицевая часть пластины покрывается черной краской, потому что тёмный цвет лучше притягивает лучи солнца. Это может быть также специальное покрытие – например, оксид титана или чёрный никель. Самые производительные абсорберы изготавливают медными.

Прозрачное покрытие делают из поликарбоната, гладкого или рифлёного, либо из укреплённого стекла, у которого содержание металла очень низкое.

Теплоизоляция состоит из трубок, изготовленных из меди или сшитого полиэтилена. По ним разносится теплоноситель. Внутри панели создаётся вакуум, чтобы не было потерь тепла. Если не отбирать тепло, то воду накапливателя можно нагреть до температуры 190–210 градусов.

 Вакуумные коллекторы

Обогрев вакуумным коллектором

Трубка этого устройства, по которой течёт теплоноситель, является абсорбером. Она помещается в вакуумный сосуд из прозрачного закалённого стекла.

Такая модель дороже пластинчатого прибора, но она более продуктивна. Здесь можно нагреть воду уже до 250–300 градусов.

Применение коллекторов

Несмотря на высокую стоимость, применение гелиосистем очень популярно как в промышленности, так и в быту.

Владельцы гелиосистем используют солнечные коллекторы не только для отопления домов. Они плодотворно работают для нагрева воды в душе, подогревания бассейнов.

Для производственных целей использование этих устройств более распространено. С их помощью отапливают гостиницы и рестораны. Парогенераторы, работающие на принципе солнечных батарей, приводят в движение разные агрегаты. Опреснители воды тоже делают на основе гелиосистем.

Производительность работы гелиосистем зимой

Гелиосистема

Использование экосистем летом ни у кого не вызывает сомнений. А вот как работают солнечные батареи зимой, остаётся больным вопросом у пользователей.

Можно с уверенностью сказать, что солнечные коллекторы зимой работают. Разумеется, эффективность их снижается, и требуется дополнительный источник обогрева. Ведь зимой солнце тоже ясно светит, а в пасмурные дни абсорбер собирает отражённый солнечный свет, проходящий сквозь тучи.

Производительность батареи зависит и от угла наклона её по отношению к горизонту. Его выставляют так, чтобы максимально использовать свет в течение короткого зимнего дня.

Снегопады значительно ухудшают работу коллектора, поэтому очистка его от налипания снега – главное условие эксплуатации зимой. Снег – враг для плоского устройства. Вакуумные батареи имеют свойство нагревать всю колбу и самоочищаться. Но иногда и их приходится чистить принудительно.

Преимущества и недостатки коллектора

Главное преимущество гелиосистемы – экологическая чистота.

  • При выработке тепла в солнечных батареях не образуются никакие вредные вещества. Он абсолютно безвреден как для человека, так и для природы.
  • Очень экономичная установка. Затраты на покупку и монтирование системы возвращаются в течение нескольких лет. В последующие годы батарея работает только в плюс, экономя затраты на обогрев помещения и нагрев воды.
  • Использование системы круглый год. Зимой солнце светит не так ярко, но даже сквозь тучи к нам доходит до 75% солнечного излучения, что даёт возможность использовать гелиосистему в любое время года. Несмотря на то что в зимнее время эффективность работы снижается, установка вырабатывает до 50% необходимой энергии.

Единственным недостатком коллектора является его высокая стоимость. Не каждый может позволить себе такую роскошь.

Заключение

Солнечные батареи работают не от прямых солнечных лучей, а от самого света. Даже когда на панели лежит снег, она продолжает работать и вырабатывать энергию, пусть и в меньших количествах. А в солнечные морозные дни воду можно нагреть до кипения.

Прежде чем установить у себя гелиосистему, внимательно изучите особенности погоды в вашей местности, правильно установите угол наклона, и солнечный коллектор не подведёт ни летом, ни зимой.

‘; blockSettingArray[0][«setting_type»] = 6; blockSettingArray[0][«elementPlace»] = 2; blockSettingArray[1] = []; blockSettingArray[1][«minSymbols»] = 0; blockSettingArray[1][«minHeaders»] = 0; blockSettingArray[1][«text»] = ‘

‘; blockSettingArray[1][«setting_type»] = 6; blockSettingArray[1][«elementPlace»] = 0; blockSettingArray[3] = []; blockSettingArray[3][«minSymbols»] = 1000; blockSettingArray[3][«minHeaders»] = 0; blockSettingArray[3][«text»] = ‘

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *