Энергия от солнечных батарей – Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Принцип работы солнечной батареи для дома: устройство, схема, эффективность

Содержание

Рассчитываем и изготавливаем солнечные батареи своими руками

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Солнечная батарея — что это такое

Солнечная батарея — что это такоеСтрого говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

фазное и линейное напряжениеПри использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между фазным и линейным напряжением. Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно здесь.

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см

2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Преимущества и недостатки этого вида энергии

Преимущества и недостатки этого вида энергииОсновные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

Конструктивные особенности

Конструктивные особенностиВ приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м

2. КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м

2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

какой выбрать узоУстройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, какой выбрать УЗО для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать тут.

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Схема подключения электроснабжения дома с использованием наших батарей

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Схема подключения электроснабжения дома с использованием наших батарейСледовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м2 = 20 м2.

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Как собрать солнечную электростанцию для дома своими руками

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Автономная солнечная электростанция для дома своими руками

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Автономная солнечная электростанция для дома своими руками

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности — количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей статье.

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать контроллер заряда, который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Как выбрать аккумулятор

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Как выбрать аккумулятор

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% — для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока — постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Другие схемы солнечных электростанций своими руками

Гелиостанции — это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Другие схемы солнечных электростанций своими руками

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Солнечная энергия — огромный, неисчерпаемый и чистый ресурс

Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.

Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.

Преобразование солнечной энергии в электричество


Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.

Как работают панели солнечных батарей


Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.

В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.

Компоненты PV ячейки


Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.

Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.


беспилотные самолеты на солнечной энергии

Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.

Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.

Стоимость солнечных батарей быстро уменьшается (в 1970 году -1кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 году – 1доллар, сейчас -20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, а ежегодный объем от продаваемых батарей превышает (по мощности) 40мВт. КПД солнечных батарей, достигавший в середине 70-х годов в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% — из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16%), стоимость очень мала (не более 10% от стоимости современных солнечных батарей). В скором времени ученые предполагают, что стоимость 1кВт-ч будет равна 10 центам, что поставит солнечную энергетику на первые места в энергетической независимости многих стран.

Перовскит «удешевит» солнечную энергию


Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.

Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.

«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».

Солнечная энергия для ЦОД


10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.

Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.


крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)

Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.


крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт

В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей «… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД». Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.

Интересно


Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.

Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.

В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.

Опыт эксплуатации cистемы бесперебойного питания с солнечными батареями в «дачных» условиях

Альтернативная «чистая» энергетика, за которой, несомненно, будущее, в некоторых случаях может быть естественным и практичным выбором уже сейчас. В первую очередь, в тех случаях, когда необходимо обеспечить электричеством маломощного потребителя, расположенного «в чистом поле». А частный дом, если всё выбрано и построено с учетом требований энергосбережения (и вы, например, не планируете использовать электричество для обогрева), как раз и является примером такого «маломощного» потребителя. Да, в отличие от квартиры, тут добавляются еще и, как правило, скважинные насосы для автономного водоснабжения и различная садовая техника, но задавшись целью, вполне реально запитать это всё от солнечной системы, дополненной ветрогенератором и для подстраховки — каким-нибудь газовым или дизельным генератором. Причем последний будет включаться крайне редко, если всё рассчитано верно.

И это может быть дешевле, чем подключаться к линии электропередач в индивидуальном порядке. Поэтому в российских условиях, наверное, отсутствие «коллективного» электроснабжения является самой частой причиной интереса к альтернативным источникам питания. Но на мой взгляд, есть, как минимум, еще один довод в пользу «зеленых» систем, причем именно солнечных, даже при наличии «общественных» 220 вольт.

Дело в том, что стабильность питания, даже в Подмосковье, за пределами городов может оставлять желать лучшего. И в случае моего дачного поселка узким местом является петляющая по соседним лесам от деревни к деревне высоковольтная линия. Деревья, увы, падают от ветра, и это обстоятельство неведомо, похоже, только тем, кто считает нормальным прокладку воздушных линий в просеках шириной от силы метров десять. Впрочем, может быть, прокладка кабеля в земле дороже, чем периодическая замена столбов, пострадавших от соседней сосны. И это всё мудро просчитано.

Хотелось бы верить, но никак не получается, потому что тут насквозь видна российская традиция: сначала сделать кое-как, но подешевле, а потом тратить время и ресурсы на латание дыр (и искренне удивляться: а почему на новое денег не хватает?). Соответственно, сделать подороже и получше «сначала», чтобы экономить «потом» — гораздо проще в частном порядке.

И поскольку примерно раз в сезон бывает «хорошая» гроза, после которой на подъем линии уходит неделя, а то и больше, не считая более кратковременных отключений, сильно захотелось получить собственный запас автономии. В идеале — такой, чтобы вообще не замечать всё это безобразие. Дизельный или бензиновый вариант практически сразу отпал, мы даже купили такой. Но желание гонять это воющее и воняющее чудо техники, приехав насладиться общением с природой, оказалось ниже, чем собственно потребность в электричестве. Лучше обойтись свечами или уехать в город. Соответственно, эта тема приобрела актуальность, когда захотелось поселиться в доме на более или менее постоянной основе.

Между тем, особенность летнего дома в том, что массовая активность там происходит летом, когда солнечной энергии, даже на широте Москвы, хоть отбавляй. Собственно, и деревья-то падают в основном летом. Так обычно и было: гроза прошла, солнце сияет, а электричества нет. А интерес к «солнечной» энергетике уже был подкреплен покупкой солнечного коллектора для подогрева воды. В частности, достаточно компактный (12 трубок по 1,8 м) уверенно справляется с задачей продления «купального сезона» в 12-кубовом бассейне примерно на месяц по сравнению с естественным нагревом.

Поэтому примерно год назад была собрана система, о которой я хочу рассказать. Специально уделил внимание предыстории, чтобы не вступать в дискуссии на тему выгодности солнечных систем по сравнению с традиционными. Иногда, как мы видим, аргументы есть и помимо стоимости киловатта.

Переходим к выбору компонентов для солнечных систем.

Солнечные панели

Итак, начнем с солнечных батарей. В порядке снижения эффективности и стоимости следуют батареи на основе монокристаллического, поликристаллического и аморфного кремния. Абсолютное большинство брендовых батарей относятся к первому типу, который и сам по себе считается наиболее долговечным, ячейки деградируют медленнее всего.

Между прочим, если дом небольшой, и у вас нет какого-нибудь удобно расположенного сарая с большим южным скатом, то на практике может оказаться, что места для батарей вовсе не так много. И есть смысл взять модель с самым большим КПД на единицу площади, если вы действительно хотите построить систему с достаточно высокой энергоотдачей. Поскольку размещать батареи необходимо именно на южном скате крыши, желательно под углом 45 градусов.

По способу монтажа есть батареи, монтируемые в крышу на манер мансардных окон (фактически только у фирмы Roto с совершенно невменяемой стоимостью). А остальное большинство представляет собой простые панели, встроенные в алюминиевую раму, которые крепятся к накладным рейлингам. Минус последних в том, что крышу приходится сверлить, и не всякое покрытие выдержит без протечек такое грубое вмешательство. Тем не менее, это единственный ходовой вариант, который и был выбран.

Что касается самих батарей, то неплохим вариантом по соотношению цены и качества оказались зеленоградские монокристаллические батареи. Все же их достаточно охотно покупают в Германии. Поэтому, находясь в России, логично и даже приятно иметь возможность воспользоваться хоть чем-то имеющим отношение к электронике, но местного производства.

Были приобретены три батареи (TCM-170B) мощностью по 170 Вт и размером 158×82 см. Расчет в данном случае был простой: получить достаточный зарядный ток в облачную погоду, а также утром и вечером, чтобы энергетический баланс, по минимуму, позволял работать холодильнику сколь угодно долго. Поскольку потребление холодильника — порядка 100-200 Вт, и работает он с перерывами, такая нагрузка описанному варианту вполне по силам — разумеется, при наличии буферных аккумуляторов.

В реальных условиях, когда солнце все же светит, а люди в доме живут, энергии должно хватать и на то, чтобы пользоваться бытовыми приборами, подкачивать воду и т. д. даже при длительном отсутствии внешнего электроснабжения. Без излишеств, но и без специального режима экономии. Во всяком случае, я так рассчитывал, и сейчас уже могу подтвердить, что расчет оправдался.

Солнечный контроллер

Стандартное напряжение солнечных панелей и напряжение, которое необходимо поддерживать для заряда аккумуляторов, не совпадает. Вернее, напряжение на выходе солнечной панели меняется от нуля до максимального в зависимости от освещенности, и без промежуточного преобразования тут не обойтись.

В самом простом случае нужен контроллер, который бы отключал аккумуляторы, когда их заряд достиг максимального, и подключал обратно, когда, во-первых, требуется подзарядка, и, во-вторых, выходное напряжение массива солнечных батарей соответствует требуемому для нормального заряда. Но это очень неэффективный метод.

Поэтому в современных недорогих контроллерах используется ШИМ-модуляция, которая позволяет получить приемлемое напряжение и ток для заряда в большем входном диапазоне. Недостаток тут в том, что все равно надо хотя бы примерно совместить выходное напряжение массива солнечных панелей с напряжением массива аккумуляторов.

Наконец, самый универсальный и эффективный метод предлагают MPPT-контроллеры, которые способны преобразовывать напряжение в гораздо большем диапазоне и во время работы отслеживают точку максимальной мощности, а соответственно, позволяют снять максимум энергии и обеспечивать зарядку ранним утром и до сумерек. В моем случае вариант с таким контроллером был единственно адекватным, поскольку три солнечные батареи, как их ни соединяй, давали нестандартное напряжение. Ну а с таким контроллером — можно соединять последовательно, что и удобнее (меньше проводов), и меньше потери при передаче, поскольку та же мощность передается при максимальном напряжении и, значит, меньшем токе. А это тоже важно, если дом высокий, и от солнечных батарей до остальной электроники и аккумуляторов будет метров десять кабеля, а то и больше.

Пожалуй, самые известные и популярные MPPT-контроллеры — производства MorningStar. Выбранная модель TriStar-MPPT-45 рассчитана на зарядный ток 45 А, что безусловно избыточно (но маломощных MPPT-контроллеров практически не найти, и к тому же требования NEC подразумевают запас в 25% по току, то есть реально допустимый ток получается не выше 36 А, и, грубо говоря, заряжать таким контроллером можно батарею аккумуляторов в пределах 360 А·ч). Напряжение батареи аккумуляторов можно произвольно выбирать из ряда: 12, 24, 48 и 36 В. И наконец, входное напряжение от солнечных панелей должно быть в пределах 150 В. Разумеется, при таких характеристиках сопряжение не составляет ни малейшей проблемы.

Инвертер + зарядное устройство

Соединив батареи с аккумуляторами, логично подумать и о второй половине цепи, то есть нам необходима возможность питать от аккумуляторов внешнюю сеть, а также заряжать их от этой самой сети.

В самом общем случае нужен инвертер, зарядное устройство и реле, которое бы переключало нагрузку при исчезновении входного напряжения. К счастью, есть модели инвертеров, где все эти функции объединены, что важно, если мы хотим добиться полностью автономной и необслуживаемой работы — поскольку отдельные инвертеры зачастую требуют перезапуска вручную после того, как они исчерпали ресурс батареи и отключились, и т. д.

Собственно, на алгоритм работы надо обращать внимание и при выборе универсального устройства. Важно, чтобы оно автоматически начинало заряд аккумуляторов после появления напряжения в сети. Также важно, чтобы напряжение отключения нагрузки для инвертера было выставлено выше напряжения отключения солнечного контроллера. В таком случае аккумуляторы начнут заряжаться сразу: либо как «дадут ток», либо когда наступит утро. Даже если под вечер аккумуляторы сядут.

Поскольку качественные модели инвертеров обычно имеют 2-3-кратный запас по пусковому току, и это не аварийный, а именно штатный режим работы, вполне корректно выбрать номинальную мощность в соответствии с реальным максимумом, который вам может потребоваться. Для этого обычно достаточно сложить мощность скважинного насоса в установившемся режиме работы и мощность компрессора холодильника и добавить 20-30% запаса на «лампочки» и прочую бытовую мелочевку, которую вы соберетесь подключить к резервной линии.

Да, разумеется, предполагается, что резервная линия прокладывается отдельным кабелем, и розетки имеет смысл обозначить так, чтобы в них не оказался случайно включенным какой-нибудь утюг. Вообще, «поработать» над тем, чтобы одновременная нагрузка была как можно меньше, имеет смысл в первую очередь ради ресурса аккумуляторов. Как известно, если разрядный ток превышает оптимальный для аккумулятора, его реальная емкость может оказаться существенно меньше заявленной. А это не в наших интересах.

В моем случае получилось 700+200 В·А «надо точно». А с учетом того, что насос со временем может потребоваться и помощнее, для резервной линии было оптимально выбрать модель мощностью в пределах 1500 В·А.

После очень непродолжительного раздумья я выбрал Outback GFX1424E. Эта модель безусловно дороговата для своей мощности в 1400 В·А. Но, как я уже отметил, гоняться за мощностью в случае с инвертерами для домашней резервной линии бессмысленно. Вряд ли кто будет ставить соответствующую батарею аккумуляторов, чтобы реально иметь возможность нагрузить их 2-3 киловаттами нагрузки. Гораздо интереснее в данном случае заплатить за дополнительные функции и, конечно же, качество.

Последнее особенно важно, учитывая, что устройству предстоит работать круглосуточно и в отдельном помещении без присмотра. Что именно привлекло в этом устройстве:

  • Произведен в США. Так сложилось, что как синоним надежности техники чаще всего употребляется фраза «немецкое качество». Между тем, американская продукция зачастую еще и покрепче и служит подольше, поскольку технологический уровень страны, как минимум, не уступает, но при этом нет такой жесткой экономии на материалах, как в Европе.
  • Герметичный корпус. Соответственно, прибор защищен от пыли, влаги и насекомых. Нет, в доме, безусловно, чисто, но в комнатах ставить стойку с электротехникой вряд ли разумно — лучше для этого подходит гараж или подвал. И устройство обычной компоновки с вентиляционными решетками обязательно насосет своим вентилятором пыли — пусть не сразу, но через год-два точно. Не исключено, что какой-нибудь паук устроит аварийную ситуацию еще раньше 🙂
  • Низкий уровень шума. Инвертер не совсем бесшумный: высокочастотный писк в некоторых режимах есть, а также, несмотря на герметичный корпус, играющий роль радиатора, внутри есть и тихоходный вентилятор, который иногда включается и перегоняет воздух от более нагретых компонентов к радиатору. Но даже при максимальной нагрузке (то есть собственно в режиме резервирования) шум не превышает 40 дБА, а в дежурном режиме, когда идет зарядка батарей, а окружающая температура превышает 25 градусов — не более 35 дБА. Это очень мало, большинство настольных компьютеров во время работы шумят громче, ну а классические инвертеры с вентиляторами — заведомо более шумные.
  • Низкая потребляемая мощность (18 Вт в простое, 6 Вт в режиме StandBy). Тут надо иметь в виду, что воспользоваться спящим режимом вы сможете, если в доме нет маломощных потребителей энергии, нуждающихся в постоянном питании. Самый распространенный пример такого потребителя — система охраны (сигнализация).
  • Чистая синусоида. Формально, даже чувствительные к форме питающего напряжения приборы способны в большинстве своем терпеть аппроксимированную синусоиду. Во всяком случае, когда речь идет о двигателях — с учетом того, что в режиме резервного питания они будут работать лишь незначительную часть времени. Но, безусловно, корректная форма синуса — это та функция, за которую стоит доплатить. Вернее, тут соображения идут от обратного: инвертеры с аппроксимацией занимают на рынке самый нижний (начальный) сегмент, и у них много недостатков чисто конструктивного свойства, помимо собственно формы напряжения. Всерьез и надолго на такие изделия рассчитывать наивно.
  • Ну а самая любопытная функция, которая окончательно склонила выбор в пользу этого устройства — возможность экспорта электроэнергии. Иными словами, когда аккумуляторы заряжены полностью, включается инвертер, и излишек энергии, поступающий от солнечных панелей (или других альтернативных источников, подключенных к низковольтному контуру цепи, параллельно батареям), отправляется во внешнюю цепь. Соответственно, сначала компенсируется внутренний расход, а если остается еще и для соседей, то можно понаблюдать, как счетчик крутится в обратную сторону. Это, конечно, приятно, потому что только ради резервирования собирать такую систему не очень интересно (всё же бо́льшую часть времени внешняя сеть исправна). Но почему бы не пользоваться своей энергией?

Надо добавить, что даже сблокированные с зарядным устройством инвертеры далеко не все имеют функцию экспорта. А если собирать систему из отдельных компонентов, придется докупать еще дополнительный контроллер и, возможно, повозиться с программированием и настройкой. Тут уже смысл в такой обвязке есть лишь при условии, что вы собрали достаточно серьезную альтернативную электростанцию.

В данном случае я тоже не совсем был уверен, что всё получится автоматически. Всё же солнечный контроллер взят другого производителя, и оба устройства предусматривают программирование (к инвертеру прилагается отдельная панелька, а солнечный контроллер подключается через COM-порт). И как раз есть возможность выбора пороговых напряжений для заряда аккумуляторов и режима экспорта.

Однако поскольку сборка всей системы затянулась за полночь, я отложил настройку и программирование до утра. А утром обнаружилось, что заряд аккумуляторов уже закончился, и поскольку в доме ничего серьезного в этот момент включено не было, счетчик действительно крутился в обратную сторону. Всё заработало как следует.

Про замеры, какие удалось сделать, я еще расскажу в конце; добавлю только, что возможность экспорта протестирована при использовании электромеханического счетчика, который легко отличить по вращающемуся диску. Электронные могут этот момент не отрабатывать как следует, то есть ток вы отдавать будете, но исключительно в благотворительных целях. А пока осталось несколько слов сказать о выборе аккумуляторов.

Аккумуляторы

Для построения домашних систем автономного энергоснабжения, как правило, используются свинцово-кислотные аккумуляторы закрытого типа. Так называемые VRLA — Valve Regulated Lead-Acid, то есть с клапанным регулированием выделяемых газов. Существуют два типа таких аккумуляторов: AGM (Absorbed Glass Mat), в которых электролит между пластинами находится в стеклопластиковых капсулах, и гелевые. В последнем случае в электролит добавляются загустители, и при производстве аккумулятора этот электролит намазывается на пластины.

И если в компактных источниках бесперебойного питания чаще используются гелевые аккумуляторы, то для систем большой емкости в настоящее время самыми популярными являются AGM-модели, которые и были выбраны.

Поскольку бюджет был отнюдь не резиновый, были взяты два аккумулятора бюджетного производителя Leoch DJM12-200 емкостью 200 А·ч каждый.

Такой большой запас необходим для того, чтобы кратковременная нагрузка высокой мощности (насос) создавала, тем не менее, ток в пределах благоприятного режима для аккумуляторов. Как мы видим на диаграмме, для того чтобы время резервирования действительно составляло часы, а не минуты, желательно, чтобы ток в низковольтной цепи не превышал 0,2C (то есть пятую часть емкости). Аккумуляторы были соединены последовательно, поскольку инвертер был выбран с поддержкой 24-вольтовой цепи, и это также благоприятно для снижения потерь в соединениях.

Соединяем в систему

Здесь все достаточно тривиально: общее правило — минимизировать длину низковольтных цепей. Поэтому инвертер, солнечный контроллер и аккумуляторы лучше разместить на одной стойке либо просто рядом.

В моем случае получилось вот так. Провода от солнечных батарей, соединенных последовательно, подключены к солнечному контроллеру (провода имеет смысл взять потолще — от 6 мм², а лучше 10, если дом высокий, а электронику вы собираетесь поместить в подвале). Выход солнечного контроллера, как и выход инвертера, подключены к аккумуляторам, соединенным, в свою очередь, последовательно. В цепь аккумуляторов также необходимо поставить специальный автомат постоянного тока для защиты инвертера и для удобства отключения системы, если это потребуется.

В качестве шин для положительного и отрицательного полюса оказалось удобнее всего использовать выходы инвертера. Сюда же можно подцепить и ветрогенератор и все остальные источники энергии, если увлечение альтернативной энергетикой перейдет в хроническую стадию болезни. Как уже отмечалось, балласт не потребуется и аккумуляторы не перезарядятся — инвертер просто будет отдавать избыточную электроэнергию во внешнюю сеть.

Несколько тестов

В первую очередь надо отметить, что поставленная цель — не замечать кратковременные отключения (на несколько часов) и не особенно менять свои планы на день из-за упомянутой ночной грозы — достигнута полностью. Было и длительное отключение (в пределах недели), когда мы были в отъезде, и раньше бы, несомненно, по возвращении обнаружили разморозившийся холодильник, в морозилке которого всякий уважающий себя дачник хранит часть собираемого урожая. И если бы в цепи не было солнечных батарей, то, разумеется, такой результат не мог бы быть достигнут.

Интересно посмотреть, сколько же фактически вырабатывается энергии при разных погодных условиях. Если замерить мгновенную мощность, когда счетчик стоит, то при условиях, близких к идеальным (температура около 25 градусов, малооблачно, полдень), удается питать нагрузку около 300 В·А. Да, это заметно меньше теоретического заявленного максимума, но упомянутый холодильник от батарей работать сможет, и при этом счетчик продолжает скручиваться, даже в облачную погоду, что уже радует. А ниже — наблюдения в течение одной недели и показатели счетчика.

 Выработка, Вт

18 мая (облачно)

730

19 мая (облачно)

750

20 мая (малооблачно)

900

21 мая (солнечно)

1300

22 мая (облачно)

600

23 мая (пасмурно)

220

Итого 4,5 кВт. Поскольку в доме в это время работали только холодильник, ноутбук и освещение (энергосберегающими лампами, вечером), а также в пределах 30-40 минут в день работал скважинный насос, общее потребление составило 7,2 кВт. То есть, действительно, почти половину расхода, даже с учетом не самых благоприятных погодных условий, солнечные батареи скомпенсировали.

Хотя, подчеркну, это «побочный эффект», цели сэкономить на электричестве в данном случае не ставилось. Что касается именно вопросов экономии, то если присматриваться к альтернативной энергетике с этой точки зрения, в первую очередь имеет смысл перевести самую затратную статью — нагрев воды — с электричества на некий прямой источник тепла. То есть если уж говорить об экономии и привязывать ее к использованию энергии солнца, лучше начать с простого солнечного коллектора. И если опыт вам понравится, тогда наверняка захочется попробовать еще какой-нибудь источник альтернативной энергии. Поскольку занятие это заразное и увлекательное.

Дополнение (к обсуждению на форуме)

В первую очередь, надо добавить, что никакой опасности «для электриков» устройство в режиме экспорта мощности не представляет. Как нетрудно догадаться, выдача мощности в сеть прекращается при отсутствии внешнего напряжения (а вернее даже — после его снижения относительно запрограммированного пользователем минимального порога). В таком случае инвертер переходит в режим автономной работы и под напряжением остается только резервная линия, и соответственно, только то оборудование, которое вы к ней подключите. За год эксплуатации было довольно много отключений, и к корректности отработки этого состояния, к инвертору претензий нет.

Сами батареи не более нуждаются в обслуживании, чем обычные оконные стекла. Иными словами, если у вас мансардное окно явно своим видом указывает на необходимость мойки, не забудьте протереть и панели. В случае экологически чистого расположения вдали от трасс, по опыту, уборка требуется не чаще раза в год. В конце весны после цветения деревьев. Но в этом году, например, из-за обильных осадков, даже окна мыть не пришлось. Все же, в отличие от вертикальных стекол, наклонные хорошо очищаются дождем. Зимуют батареи у большинства пользователей, которых мне удалось опросить через одну из компаний установщиков таких систем, под снегом, проблем также нет. Хотя, разумеется, если вы планируете снимать напряжение и зимой, то размещать батареи лучше под большим углом или на каком-то поворотном кронштейне, чтобы снег не задерживался.

При выборе инвертора настоятельно рекомендую смотреть спецификации по стартовым токам, они у хороших моделей в несколько раз превосходят штатную мощность. Соответственно, не стоит доверять «ощущениям» или советам тех, кто хочет вам продать оборудование «с запасом». Запас необходим, но рассчитывать его необходимо не по «ощущениям», а по измерениям.

Кстати, буквально на днях сильная гроза опять «удивила» незадачливых подмосковных энергетиков падением сосен. И электричества не было примерно сутки. И как всегда на следующее утро ярко светило солнце, выполняя свою полезную работу.

 

.

Аккумуляторы для солнечных батарей: гелевые, свинцово-кислотные и др

Системы альтернативной энергетики все чаще используют при обеспечении жилых домов электричеством. Так как режимы генерации и потребления электроэнергии различаются, то необходимо обеспечит ее накопление для последующей отдачи. Согласны?

Для того чтобы использовать энергию в требующийся хозяину отрезок времени, в схему включают аккумуляторы для солнечных батарей. Мы расскажем, как грамотно подобрать устройства, предназначенные для работы в циклах зарядки и разрядки. Наши рекомендации помогут выбрать оптимальную модель.

Содержание статьи:

Аккумуляторы в системе бытовой гелеоэнергетики

Понимание способов и нюансов использования аккумуляторов при обеспечении объекта электроэнергией от солнечных батарей позволит осуществить правильный выбор устройств и обеспечит максимальный КПД системы.

Для совершения взвешенной покупки необходимо досконально разобраться в способах создания аккумуляторного массива (блока) и в правилах расчета основных характеристик.

Способ объединения устройств в единый массив

Жилые и промышленные объекты потребляют электрическую нагрузку, превышающую возможности одного аккумулятора. В том случае, если система солнечной энергетики рассчитана на большое количество электроприборов, необходимо создание массива аккумуляторных батарей по примеру подобного объединения .

Галерея изображений

Фото из

Прибор для сбора и хранения энергии

Установка аккумулятора в частном доме

Переносной тип аккумулятора для мини-электростанций

Износостойкая к погодным условиям аппаратура

Подключение аккумуляторов в единый массив хранения электроэнергии можно выполнить параллельным, последовательным или смешанным способом. Выбор зависит от необходимых выходных показателей мощности и напряжения.

Напряжение и мощность блока аккумуляторовНапряжение и мощность блока аккумуляторов

В зависимости от способа подключения аккумуляторов между собой можно добиться различных значений выходного напряжения, однако не следует создавать очень сложных схем во избежание образования уравнивающих током между устройствами в массиве

Аккумуляторные батареи размещают в доме или ином строении для обеспечения значения температуры окружающего воздуха в диапазоне от 10 до 25 градусов Цельсия выше нуля и предотвращения попадания на них воды. Это значительно продлевает срок службы устройств и уменьшает потери электроэнергии.

Современные технологии производства аккумуляторных батарей, предназначенных для размещения в жилых строениях, предусматривают повышенные меры экологической безопасности. Поэтому предпринимать каких либо специальных мер по интенсивной вентиляции помещения нет необходимости. Однако располагать их в жилых комнатах все же не следует.

Так как аккумуляторы имеют значительный вес (прибор на 12 Вольт и 200 Ач весит около 70 кг), то их надо размещать на полу или прочных и надежно закрепленных стеллажах.

Необходимо предотвратить вероятность падения аккумуляторов с высоты, так как в этом случае они выйдут из строя, а системы с жидким электролитом к тому же опасны для здоровья человека при их разгерметизации.

С увеличением длины силового кабеля возрастает электрическое сопротивление, что приводит к уменьшению КПД системы. Поэтому практикуют размещение аккумуляторов вплотную друг к другу, чтобы минимизировать общую протяженность проводов.

Стеллаж для аккумуляторовСтеллаж для аккумуляторов

Стеллаж для аккумуляторных батарей должен выдерживать большой вес. Так, блок из восьми двухсотамперных аккумуляторов весит больше чем пол тонны

Особенности функционирования системы

При параллельном и комбинированном последовательно-параллельном соединении аккумуляторов в единый массив возможна разбалансировка устройств по уровню заряда. Это приводит к тому, что устройство будет функционировать не в полном цикле, а значит, его ресурс будет выработан быстрее.

Система получения электроэнергии от солнца всегда снабжена , который управляет зарядом аккумулятора. В случае создания массива батарей дополнительно необходима установка выравнивающих заряд перемычек.

Во избежание проблем неравномерной зарядки и разрядки объединенных в единый массив аккумуляторов необходимо использовать устройства одной модели, а еще лучше – одной партии. Это правило актуально не только для систем солнечной энергетики.

Сейчас практически все жилье можно обеспечить приборами, работающими от сети в 12 или 24 Вольта, в том числе холодильниками, телевизорами и т.д. Однако разводка с таким напряжением по всему дому не имеет смысла, так как мощность тока будет очень велика.

Значит, при реализации такой задумки необходим дорогой кабель с большим сечением жил и будут велики потери от электрического сопротивления.

Работающий от 12 Вольт холодильникРаботающий от 12 Вольт холодильник

Практически для всей бытовой техники существуют модели, работающие от 12-вольтовой сети постоянного тока. Если разводка электрического кабеля не слишком длинная, то можно использовать систему с низким напряжением

Поэтому в непосредственной близости от аккумуляторных батарей устанавливают – устройство для преобразования электрического напряжения.

Кроме того, реальное выходящее напряжение от аккумуляторного блока может несколько отличаться от заявленного. Так, полностью заряженные популярные для использования в гелевые аккумуляторы выдают напряжение 13-13,5 Вольта, поэтому инвертор выполняет функции стабилизатора.

Расчет необходимой емкости батарей

Емкость аккумуляторных батарей рассчитывают, исходя из предполагаемого периода автономной работы без подзарядки и суммарной мощности потребления электроприборов.

Среднюю по временному интервалу мощность электроприбора можно рассчитать следующим образом:

P = P1 * (T1 / T2),

Где:

  • P1 – паспортная мощность прибора;
  • T1 – время работы прибора;
  • T2 – общее расчетное время.

Практически на всей территории России существуют длительные периоды, когда не будут работать по причине плохой погоды.

Устанавливать большие массивы аккумуляторов для их полной загруженности всего несколько раз в год нерентабельно. Поэтому к выбору интервала времени в течение которого устройства будут работать только на разряд необходимо подойти исходя из среднестатистического значения.

Солнечная батарея в пасмурную погодуСолнечная батарея в пасмурную погоду

Количество генерируемой солнечными панелями энергии зависит от плотности облаков. Если пасмурная погода в регионе не редкость, то недостаток входящей мощности необходимо учитывать при расчете объема аккумуляторного блока

Если планируют использовать накопленную энергию в течение суток, например, в , то лучше принять за расчет чуть больший интервал, такой как 30 часов.

В случае длительного периода, когда нет возможности использовать солнечные батареи, необходимо применить другую систему получения электроэнергии, основанную, например, на дизель- или газогенераторе.

Заряженный на 100% аккумулятор может до своей полной разрядки выдать мощность, которую можно рассчитать по формуле:

P = U x I

Где:

  • U – напряжение;
  • I – сила тока.

Так, один аккумулятор с параметрами напряжения 12 вольт и силы тока 200 ампер, может сгенерировать 2400 ватт (2,4 кВт). Для расчета суммарной мощности нескольких аккумуляторов, необходимо сложить значения, полученные для каждого из них.

Работающий аккумуляторный блокРаботающий аккумуляторный блок

В продаже есть аккумуляторы с большим показателем мощности, но они стоят дорого. Иногда намного дешевле приобрести несколько обыкновенных устройств в комплекте с соединительными кабелями

Полученный результат необходимо умножить на несколько понижающих коэффициентов:

  • КПД инвертора. При правильном согласовании напряжения и мощности на входе в инвертор будет достигнуто максимальное значение от 0,92 до 0,96.
  • КПД силовых кабелей. Минимизация длины проводов, соединяющих аккумуляторы и расстояния до инвертора необходима для снижения электрического сопротивления. На практике значение показателя составляет от 0,98 до 0,99.
  • Минимально допустимое разряжение батарей. Для любого аккумулятора существует нижний предел зарядки, при преодолении которого срок службы устройства значительно снижается. Обычно, контроллеры выставляют на минимальное значение зарядки 15%, поэтому коэффициент равен около 0,85.
  • Максимально допустимая потеря емкости до смены аккумуляторов. Со временем происходит старение устройств, повышение их внутреннего сопротивления, что приводит к безвозвратному уменьшению их емкости. Использовать устройства, остаточная емкость которых менее 70% нерентабельно, поэтому значение показателя нужно взять за 0,7.

Вопреки распространенному мнению, КПД аккумулятора – отношение полученной и отданной электроэнергии включать в расчет не следует. Указанный в технической документации показатель емкости аккумулятора учитывает возможный объем на отдачу.

В итоге значение интегрального коэффициента при расчете необходимой емкости для новых аккумуляторов будет приблизительно равно 0,8, а для старых, перед их списанием – 0,55.

Расчет количества и емкости аккумуляторовРасчет количества и емкости аккумуляторов

Для обеспечения дома электроэнергией при протяженности цикла заряда – разряда равной 1 суткам потребуется 12 аккумуляторов. Когда один блок из 6 устройств будет работать на разряд, второй блок будет заряжаться

Максимально допустимые токи

Для каждого аккумулятора в технической документации прописан максимально допустимый ток заряда. Превышение этого значение ведет к перегреву устройства, резкому и безвозвратному снижению его показателей.

Поэтому при выборе батарей для необходимо убедиться в том, что они могут обеспечить потребление вырабатываемого солнечными панелями электричества.

Еще один важный показатель – допустимый разрядный ток:

  • Штатный разрядный ток, для работы на величине которого (или меньшем значении) предназначен аккумулятор. Работа всего подключенного в систему электрооборудования должна быть обеспечена этим показателем.
  • Максимальный разрядный ток, который кратковременно может дать устройство при пиковых нагрузках. Такие нагрузки могут возникнуть при включении некоторого оборудования, например содержащего компрессоры холодильника или кондиционера.

Превышение длительное время первого показателя или кратковременного – второго ведет к преждевременному износу аккумулятора. При старении устройств эти показатели снижаются на 20-30%, что также необходимо учитывать.

Особенности устройства и основные параметры

Автомобильные аккумуляторы не предназначены для работ с большим количеством циклов зарядки и разрядки. Для альтернативной и резервной энергетики используют устройства другого типа. Так как их стоимость велика, то необходимо тщательно изучить все параметры перед приобретением.

Аккумуляторы для альтернативной энергетикиАккумуляторы для альтернативной энергетики

Режимы работы аккумулятора в автомобиле и в системе альтернативной энергетики настолько отличаются, что его предназначение указывают даже на самом устройстве

Используемые типы для альтернативной энергетики

Практически все аккумуляторы, применяемые в альтернативной энергетике и устанавливаемые в строениях, относятся к типу необслуживаемых. Пользователю нет возможности проводить с ними физические операции, затрагивающие их структуру.

Это сделано для того, чтобы минимизировать риск физического или химического воздействия батарей на людей, воздух и окружающие их предметы. Поэтому нет необходимости подробного изучения структуры и физико-химических нюансов работы аккумуляторных батарей разных типов. Большее внимание надо уделить различиям в основных технических характеристиках устройств.

OPzS аккумуляторы выполнены подобно простейшим свинцово-кислотным устройствам. Изменение в форме положительной пластины позволяет обеспечить значительно большее число циклов зарядки и разрядки, чем у автомобильных аналогов.

Недостатком является наличие жидкого электролита, что может быть опасно при их разгерметизации. Средняя ценовая ниша.

Щелочные (никелевые) аккумуляторы применяют редко по причине их невосприимчивости к малым токам при зарядке и необходимости прохождения полного цикла от заряженного до разряженного состояния. В ином случае произойдет уменьшение емкости батареи.

Также эти устройства имеют больший вес и габариты по сравнению с конкурентами той же емкости. Опасны при разгерметизации. Низкая ценовая ниша.

Разгерметизация аккумуляторной батареиРазгерметизация аккумуляторной батареи

Разгерметизация аккумулятора возможна при внутреннем дефекте, чрезмерной мощности зарядного тока, падении с высоты или работы в неподходящих условиях. Наибольшие проблемы при этом создадут устройства, содержащие опасные при испарении жидкости

В AGM аккумуляторах электролит находится в связанном состоянии в структуре из стекловолокна. Их можно заряжать малыми токами. Практически безопасны и занимают среднюю ценовую нишу среди конкурентов.

В GE (гелевых) аккумуляторах в электролит добавлен оксид кремния, в результате чего он находится в гелеобразном состоянии. Устройства обладают высокой степенью безопасности и хорошими характеристиками. Высокая ценовая ниша.

Магазин по продаже аккумуляторовМагазин по продаже аккумуляторов

Аккумуляторы для альтернативной энергетики не продают в автомобильных магазинах. Приобрести их можно в фирмах по продаже солнечных батарей, ветроэлектрических установок или через интернет

Аккумуляторные батареи на основе лития (например, литий-железо-фосфатные модели) обладают очень хорошими характеристиками, компактны, имеют значительно меньший вес, практически безопасны. Однако их стоимость значительно выше, чем у конкурирующих типов устройств, даже гелевых.

С позиции соотношения цены и технических характеристик гелевый и литиевый тип аккумуляторов наиболее привлекателен. Но единовременные стартовые вложения в них весьма велики, поэтому устройства других типов тоже широко распространены на рынке батарей для альтернативной энергетики.

На отечественном рынке активно востребованы аккумуляторы следующих марок:

Галерея изображений

Фото из

Популярностью, обоснованной доступной ценой, пользуются аккумуляторы SunStonePower. Тягловые свинцово-кислотные приборы заполнены абсорбированным электролитом. Серия ML снабжена износостойкой свинцовой решеткой

Аккумуляторы китайского производства Delta GX отличаются стабильной работой, эксплуатационной долгосрочностью, устойчивостью к длительному разряду. Электротехнические показатели увеличены за счет гелеобразного состояния электролита

Свинцово-кислотные батареи MNB ММ привлекают повышенной герметизацией. Абсорбирование электролита проводилось в стекловолоконном сепараторе

Из всех литиевых аккумуляторов самым безопасным является АКБ LT-LYP. Ему не свойственно самовоспламенение. Вес в два раза меньше, чем у свинцовых, срок эксплуатации в десятки раз превышает период службы литий-ионных и свинцовых моделей

Свинцово-кислотные аккумуляторы Sonnenschein производятся в соответствии с технологическими правилами dryfit. Загущенный электролит внутри корпуса способствует рекомбинации водорода и кислорода. К плюсам относят высокую токоотдачу и наличие предохранительного клапана

Надежные, безотказно работающие свыше десяти лет аккумуляторы оснащены системами оповещения об уровне заряда. Конденсат отводится по предназначенным для его выброса клапанам

Гелевый аккумулирующий агрегат Haza китайского производства содержит серную кислоту повышенной степени очистки. Герметизация идеальна, благодаря чему не требуется долив воды, есть регулирующий клапан

В аккумуляторных блоках APS RBC используются свинцово-кислотные батареи от Ventura, CSB, Fiamm, BB Battery. Оборудование отличается предельно высокое качество

Аккумулятор для солнечных батарей SunStonePower

Оборудование китайского производства Delta GX

Свинцово-кислотные батареи MNB ММ

Безопасный литиевый аккумулятор АКБ LT-LYP

Стационарный аккумулятор Sonnenschein

Японское качество с логотипом YUASA

Гелевый аккумулирующий агрегат Haza

Аккумуляторные блоки APS RBC

Представленные аккумуляторы характеризуются превосходными эксплуатационным характеристиками и доступной ценой.

Выбор модели аккумулятора

Основные параметры аккумуляторных батарей для гелиоэнергетики, на которые необходимо обратить внимание при покупке следующие:

  • напряжение и емкость, определяющие мощность аккумулятора;
  • глубина безопасного максимального разряда, при соблюдении которой возможно функционирование аккумулятора заявленные производителем сроки;
  • гарантированное количество циклов зарядки и разрядки при соблюдении всех технических условий;
  • величина саморазряда, характеризующая интенсивность потери электроэнергии в заряженном аккумуляторе при простое;
  • максимальный ток заряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор способен принять без ущерба для дальнейшего функционирования;
  • штатный ток разряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор длительно способен отдать без ущерба для дальнейшего функционирования;
  • максимальный ток разряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор кратковременно способен отдать без ущерба для дальнейшего функционирования;
  • оптимальная температура для работы устройства;
  • размер и масса аккумулятора, знание которых необходимо для выбора места их размещения и способа установки.

Все эти параметры описаны в технической документации, которую в электронном виде размещают на сайте всех крупных производителей.

Выводы и полезное видео по теме

Обзор нюансов функционирования аккумуляторов разных типов для гелиосистем:

Сравнения разных типов стартерных аккумуляторов. Плюсы и минусы для альтернативной энергетики:

Опыт использования литиевых (LiFePo4) аккумуляторов. Реальный блок из автомобильных устройств, нюансы его работы:

Правильный выбор аккумуляторов по их параметрам позволит обеспечить надежную работу альтернативной энергосистемы. Не надо чрезмерно экономить на блоке хранения электроэнергии – первоначальные стартовые вложения окупятся бесперебойной работой системы на несколько лет вперед.

Оставляйте, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы, публикуйте фото по теме статьи. Расскажите нам о том, как выбирали аккумуляторы для дачной мини-электростанции из солнечных батарей. Делитесь информацией, которая будет полезна посетителям сайта.

Сколько энергии вырабатывает (дает) солнечная батарея

Солнечная батарея – это ряд солнечных модулей, которые преобразуют солнечную энергию в электричество и при помощи электродов передают его дальше, в другие преобразовательные устройства. Последние нужны для того, чтобы сделать из постоянного тока переменный, который способны воспринимать бытовые электроприборы. Постоянный ток получается, когда солнечную энергию воспринимают фотоэлементы и энергию фотонов преобразуют в электрический ток.

От того, сколько фотонов попадет на фотоэлемент, зависит, сколько энергии дает солнечная батарея. По этой причине, на производительность батареи влияет не только материал фотоэлемента, но и количество солнечных дней в году, угол падения солнечных лучей на батарею и другие факторы, не зависящие от человека.

Аспекты, влияющие на то, сколько энергии вырабатывает солнечная батарея

сколько энергии вырабатывает солнечная батарея

Прежде всего, производительность солнечных панелей зависит от материала изготовления и технологии производства. Из тех, что представлены на рынке, Вы можете найти батареи с производительностью от 5 до 22%. Все солнечные батареи разделяют на кремниевые и пленочные.

Производительность модулей на основе кремния:

  • Монокристаллические кремниевые панели – до 22%.
  • Поликристаллические панели – до 18%.
  • Аморфные (гибкие) – до 5%.

Производительность пленочных модулей:

  • На основе кадмий теллурида – до 12%.
  • На основе селенида мели-индия-галлия – до 20%.
  • На полимерной основе – до 5%.

Существуют так же смешанные типы панелей, которые преимуществами одного вида позволяют перекрыть недостатки другого, благодаря чему повышается КПД модуля.

Так же на то, сколько энергии дает солнечная батарея влияет количество ясных дней в году. Известно, что если солнце в Вашем регионе появляется на целый день меньше чем в 200 днях в году, то установка и использование солнечных батарей едва ли будет выгодной.

Кроме того, на КПД панелей влияет так же и температура нагрева батареи. Так, при нагревании на 1̊С производительность падает на 0,5%, соответственно, при нагреве на 10̊ С мы имеем в половину уменьшенный КПД. Чтобы предотвратить такие неприятности устанавливают системы охлаждения, так же требующие расход энергии.

Для сохранения высоких показателей производительности в течение дня устанавливают системы слежения за движением солнца, которые помогают сохранять прямой угол падения лучей на солнечные панели. Но эти системы стоят достаточно дорого, не говоря о самих батареях, поэтому не всем по карману устанавливать их для обеспечения энергией своего дома.

Сколько энергии вырабатывает солнечная батарея, зависит так же от суммарной площади установленных модулей, потому что каждый фотоэлемент может принять ограниченное количество солнечной энергии.

Как рассчитать, сколько энергии дает солнечная батарея для Вашего дома?

Опираясь на вышеизложенные моменты, которые стоит учесть при покупке солнечных панелей, мы можем вывести простую формулу, по которой можем высчитать, какое количество энергии будет выдавать один модуль.

рассчитать, сколько энергии дает солнечная батарея

Допустим, Вы выбрали один из самых производительных модулей площадью в 2 м2. Количество солнечной энергии в обычный солнечный день равно примерно 1000 Ватт на м2. В итоге мы получаем такую формулу: солнечная энергия (1000 Вт/м2) × производительность (20%) × площадь модуля (2 м2) = мощность (400 Вт).

Если Вы хотите высчитать, сколько воспринимается батареей солнечной энергии в вечернее время суток и в облачный день, Вы можете воспользоваться следующей формулой: количество солнечной энергии в ясный день × синус угла солнечных лучей и поверхности панели × процент преобразуемой энергии в пасмурный день = сколько солнечной энергии в итоге преобразует батарея. Для примера допустим, что вечером угол падения лучей равен 30̊. Получаем следующий расчет: 1000 Вт/м2 × sin30̊ × 60% = 300 Вт/м2, и последнее число используем как основу расчета мощности.

Накопители энергии для солнечных батарей

Аккумуляторы для солнечных батарей – это устройства, позволяющие накапливать и затем использовать энергию, полученную при работе солнечных батарей. При гибридном использовании традиционной и альтернативной энергии такие накопители энергии солнечных батарей становятся резервными источниками питания, в случае возникновения проблем в работе сети.

Принцип работы аккумуляторов для солнечных батарей (АКБ) заключается в том, что заряд, полученный при работе солнечных панелей, сохраняется при помощи обратимых реакций веществ в аккумуляторе. Благодаря такому принципу работы, обеспечивается циклический режим работы накопителя. Заряд может сохраняться в накопителе в течение относительно долгого времени: до нескольких месяцев.

Виды аккумуляторных батарей для солнечных панелей

Виды аккумуляторных батарей для солнечных панелей

Все АКБ делятся на несколько типов.

  • AGM
  • Гелевые
  • Панцирные

К панцирным относят:

  • Накопители тягового типа
  • Стационарного типа
  • Солнечного типа: измененный вариант тягового или стационарного накопителя.

Все они выдерживают разное количество циклов разряда на 80%. Скажем, панцирные в этом плане являются самыми высококачественными и выдерживают до 1,5 тысяч циклов, в то время как накопители типа AGM не выдерживают больше 400 циклов и, к тому же, крайне чувствительны к перезарядам.

В чем заключаются трудности использования таких накопителей энергии солнечных батарей?

  • Нужно избегать ситуаций, когда заряд батареи может опускаться ниже 80%. На накопителе это скажется отрицательно, потому что активные вещества начинают вступать в необратимые реакции, что приводит к неспособности накопителя выполнять свою функцию. Таким образом, категорически противопоказано допускать разряд АКБ ниже 20%, а так же держать батарею с зарядом ниже 80% больше 12 часов.
  • Некоторые накопители очень чувствительны к изменениям температуры электролита. К ним относят накопители типа AGM и гелевые аккумуляторы. Таким образом, если температура электролита повысилась хотя бы на 10̊, то время службы накопителя уменьшилось в 2 раза.
  • Чтобы обеспечить действительно долгую службу накопителю энергии солнечных батарей, нужно и давать ему возможность зарядиться до 100%. Все время держать его заряженным тоже будет вредно, но 1 раз в месяц держать его полностью заряженным в течение 13 часов просто необходимо.

Есть ли еще технологии, которые служат для оптимизации передачи, распределения и использования электричества?

накопителей энергии солнечных батарей

Несомненно, таких технологий много. На сегодняшний день, пока вопрос о постепенном переходе на альтернативные источники энергии открыт, устройства и программы, которые обеспечат рациональное распределение энергии, будут очень востребованы.

Если задаться вопросом, можно найти целые статистики компаний, которые по своему профилю занимаются либо созданием разноплановых накопителей энергии солнечных батарей для бытовых и промышленных нужд, либо программным обеспечением, которое позволило бы лучше распределять мощности в соответствии с предпочтениями хозяина солнечных батарей или других устройств для преобразования альтернативной энергии.

Пусть использование альтернативной энергии и дорогое удовольствие, но сегодня эта область активно развивается и все больше людей задумываются о том, как перейти на альтернативный источник энергии, который всегда будет надежно обеспечивать их электричеством и не только. Именно по этой причине существует множество приспособлений, пусть и не совершенных, но развивающихся, которые упрощают процесс взаимодействия с возобновляемыми природными ресурсами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *