Добавка фибра в бетон – расход фибры для армирования, полипропиленовая фибра для теплого пола, сколько добавлять, фото и видео

Содержание

расход, рекомендации по применению, компания Полимер

Область применения

Рекомендуемый размер фиброволокна, мм

Расход фиброволокна

Промышленные полы, 
цементнобетонные дорожные покрытия

12, 20, 40

от 1 кг  на 1 м3  в зависимости от необходимых прочностных характеристик

Стяжки, теплые полы

12, 20

 от 0,9 до 1,5 кг  кг на 1  м3  в зависимости от необходимых прочностных характеристик

Железобетонные, бетонные конструкции и изделия 

12, 20

 от 0,9 кг на 1 м

3 для придания конструкциям и изделиям повышенной прочности и исключения трещин

Ячеистые бетоны (пенобетон, газобетон неавтоклавного твердения)

12, 20, 40

 от 0,6 кг до 1,5 кг  волокна на 1 м3 в зависимости от необходимых прочностных характеристик готового изделия

Сухие строительные смеси (наливные полы, штукатурки, ремонтные составы)

6, 12

от 1 кг  на 1 м3 Дозировка зависит от вида сухой строительной смеси, технологии производства

Мелкоштучные изделия, сложнопрофильные изделия, малые архитектурные формы

6, 12

от 0,9 кг  на 1 м3 Расход фиброволокна зависит от параметров изделия, размеров, типа вяжущего, технологии производства

Тротуарная плитка

6, 12

от 0,6 кг до 1,5 кг  на 1м³ смеси в зависимости от прочностных характеристик готового изделия, технологии производства.

Способ применения фиброволокна

Вариант 1: Фиброволокно засыпается в любой бетоно- или растворосмеситель (миксер) в сухую смесь перед добавлением воды .

Вариант 2: Фиброволокно  добавляется в цементное молоко, затем все остальные компоненты бетонной смеси.
 

Рекомендации по применению фиброволокна

Объемное армирование бетона (пенобетона, цементно-песчаных смесей) с помощью полимерных волокон в последние годы все шире применяется в строительной индустрии. В отличие от армирующих сеток из стали, микроволокна равномерно распределяются в объеме смеси, улучшают вяжущие свойства, делают ее устойчивой к расслоению.

Применение фиброволокна приводит к тому, что бетон становится более прочным к растяжениям, снижается показатель его усадки, что повышает трещиностойкость. Вместе с тем возрастает устойчивость материала к воздействию среды: к чередующимся циклам замораживания и оттаивания, высыхания и увлажнения.

Фиброволокно расходЭффективность армирования бетона с помощью полимерного микроволокна — величина переменная, которая определяется рядом параметров: длиной и диаметром волокон, модулем упругости полимера, а также количеством волокон в единице объема цементной смеси.

Наиболее важными факторами являются упругость и длина волокон: чем больше модуль упругости полимера соответствует аналогичному показателю цементной матрицы, и чем больше по длине используемые волокна, тем значительнее будет влияние дисперсионного армирования на характеристики трещиностойкости бетона. Следует отметить, что длина волокон не должна быть чрезмерно высокой — это привело бы к появлению технологических трудностей при попытке провести равномерное распределение микроволокон в объеме подготавливаемой смеси.

Для каждого вида бетонной смеси следует опытным путем устанавливать, какая длина
волокна является оптимальной — при каком показателе будет достигаться наиболее равномерное распределение армирующей добавки по объему. К примеру, для пенобетонных смесей используется волокно длиной до 40 мм, в случае тяжелого подвижного бетона — длиной от 12 до 20 мм, а если смеси малоувлажненные, уплотняемые с помощью метода вибропрессования — не более 6-7 мм.

Компания Полимер производит и реализует полипропиленовое фиброволокно различной длины: 6, 12, 20 и 40 мм. Испытания данных армирующих добавок для цементно-песчаных растворов (под устройство стяжек) и для пенобетона проводились в Ростовском государственном строительном университете, на кафедре строительных материалов. Ниже, в таблице, приводятся результаты исследований влияния количества полипропиленового волокна в смеси на прочностные характеристики, на растяжение при изгибе, на усадку состава при высыхании.

Таблица 1. Влияние содержания полипропиленового волокна на прочность материала при изгибе и усадку при высыхании пенобетона (длина волокон 20 мм)

 

СерияРасход фибры
на 1 м3 бетона, кг
Средняя плотность
бетона, кг/м3
Прочность на растяжение при изгибеНормированная усадка ( в интервале влажности 5-35%)Общая усадка (при полном высыхании)
МПа%мм/м%мм/м%
Ф-10,005280,231003,551008,1100
Ф-20,985380,411783,07867,289
Ф-31,955300,542353,32937,188
Ф-42,925320,602613,671036,884
 

Данные, приведенные в таблице 1, дают возможность сделать вывод: при изготовлении фибробетона марки D500 (самого популярного по плотности) наибольший технико-экономический эффект будет достигнут при дозировке фибры от 0,6 до 2 кг/м3. Показатель прочности на растяжение при изгибе при этом вырастает примерно в 2 раза, а нормированная усадка при высыхании снижается на 10-15%.

Таблица 2. Влияние полипропиленового волокна на усадку цементно-песчаной смеси при полном высыхании и на прочность при изгибе (длина волокон 12 мм)

 

  Серия

Расход
фибры
на 1 м3
бетона,

кг               

Прочность при сжатии, МПа

Прочность
на растяжение
при изгибе
Общая усадка
(при полном 
высыхании)
МПа%мм/м%
Ф-10,0029,21,631001,32100
Ф-20,9526,02,271390,9370
Ф-31,4327,12,561570,8161
Ф-41,9028,72,801720,5441
 


Как следует из приведенных показателей, включение волокна в качестве армирующей добавки оказало существенное влияние на показатель прочности на растяжение при изгибе и усадку цементно-песчаного раствора при высыхании. В данном случае положительное влияние фибры сказывается при росте ее дозировки. В цементно-песчаных стяжках оптимальным показателем для снижения риска образования трещин при усадке является величина в пределах от 1 до 2 кг/м3.

Таким образом, применение полипропиленового волокна позволяет улучшить показатели трещиностойкости пенобетона и плотного песчаного бетона.

 

Преимущества нашей фибры

Преимущества нашей фибры

1.Фиброволокно изготовлено исключительно из высококачественного первичного полипропилена Российского производства.

2.Высокопрочное на разрыв волокно — прочность на разрыв 579 МПа, модуль упругости 16000 – 17000 МПа,   удлинение при разрыве  20 -25%.

3.Волокно круглого сечения диаметром 20 мкм. Содержание единичных волокон длиной 12 мм в 1 кг —   148 000 000 шт

расход на 1м3, сколько добавлять

Фибра для стяжки полаФибра для стяжки пола изготавливается из пропилена в виде волокна полупрозрачного белого оттенка, имеет диаметр 15—25 микрон. Для лучшей адгезии со строительными материалами его пропитывают масляным веществом.

За счет использования материала, усиленного фиброй, увеличивается устойчивость основания к истиранию, поверхность выдерживает больше циклов замораживания/ оттаивания, исключается возникновения трещин и проникновение влаги.

Характеристики фибры

для стяжкиПолипропиленовая фибра для стяжки является полноценной заменой металлического армирования.

Она имеет много достоинств по сравнению с металлической фиброй.

Сравнительная характеристика фиброволокна и металла для армирования приведена в таблице:

  Фибра 
ПоказателиПолипропиленоваяМеталлическаяБазальтовая
Разрушение под воздействием влажности, коррозияНе подвержена ПодверженНе подвержена
ЭлектростатикаНе электризуетсяЭлектризуетсяНе электризуется
СтоимостьСредняяНизкаяВысокая
ПрочностьДостаточная (0.9—0.95 г/ куб м), ниже, чем у металлаВысокаяЦелостность основания сохранится даже при сквозном растрескивании бетонного раствора
Использование в помещениях с высокими нагрузками тяжести, с вибрацией и высокой проходимостьюНе рекомендуетсяПодходитВозможно применение в сейсмически активных районах, на севере, и в помещениях с повышенной влажностью
длина волоконЧем длиннее волокно, тем больше нагрузок выдержит бетон

Фибру выпускают в виде рассыпчатого материала, длина ее волокна составляет от 6 до 20 см.
Длина волокон влияет на сферу применения:

  • для облицовки и кладки применяют волокна длиной 6 мм;
  • фибра для бетонной стяжки и возведения монолитных объектов должна иметь длину 12 мм;
  • при строительстве дамб и других конструкций, используемых в условиях агрессивной среды, понадобится материал длиной 18 мм.

При покупке нужно уточнить, имеется ли на продукцию сертификат. Если купить некачественный материал, он не будет выполнять требуемые функции, может выделять в воздух вредные вещества.

Преимущества фиброволокна

Волокна равномерно распределяются в цементном растворе путем тщательного их перемешивания, выполняют функцию армирования.волокно из фибры

смесь с волокномФибра улучшает качества смеси, ускоряет застывание

Преимущества при добавлении волокон в цементный раствор:

  • придает прочность, пластичность;
  • увеличивает срок эксплуатации основания;
  • морозоустойчивость;
  • не горит, не поддерживает горение;
  • защита от проникновения влаги за счет уменьшения пор в бетоне;
  • исключается усадка;
  • уменьшается срок застывания бетона.

Применяется для улучшения свойств бетонного раствора и приготовления штукатурных составов. Используется при строительстве конструкций в сейсмически активных и эксплуатируемых в агрессивной среде районах.

Технология монтажа стяжки с фиброволокном

Как и при монтаже обычной стяжки, нужно подготовить поверхность, сделать разметку уровня расположения чернового пола, правильно приготовить бетонный раствор и выполнить монтаж, согласно описанной технологии выполнения работ.

Подготовка поверхности

монтажа стяжки с фиброволокномСнимаем старое напольное покрытие, осматриваем плиту на наличие дефектов, выступающей арматуры.

Последовательность выполнения подготовительных работ:

  1. Трещины расширяем с помощью болгарки, зачищаем их края, заделываем цементно-песчаным раствором, смешанным в пропорции 3:1. Чтобы бетон лучше схватился, поверхность обильно смачиваем.
  2. Убираем пыль с плиты пылесосом.

По периметру стен наклеиваем демпферную ленту. Она будет выполнять функцию температурного шва при расширении бетона во время высыхания.

Разметка уровня стяжки

Разметка уровня стяжкиПеред началом разметки найдите наивысшую и низшую точки пола

Толщина стяжки с фиброй и пропорции смешиваемых материалов зависят от перепадов высоты пола и функционального назначения помещения.

Находим низшую и наивысшую точки на полу с использованием лазерного или водяного уровня. Делаем отметку на стене, чертим горизонтальную линию по высоте будущей стяжки.

Согласно разметке устанавливаем направляющие параллельно друг другу с шагом 15—20 см. Учитываем, что расстояние между маяками должно быть меньше, чем ширина инструмента для распределения раствора. Подробнее о том, как сделать это с помощью лазерного уровня, смотрите в этом видео:

В качестве маяков используем ровные профили, выставляем их в горизонтальную плоскость. Для фиксации определенной высоты применяем бруски или фиксируем маяки на цементный раствор.

Проверяем с помощью лазерного или пузырькового уровня правильность установки маяков.

Подготавливаем раствор

смесь с волокномГотовим раствор с добавлением фибры для стяжки.

Существует несколько способов смешивания компонентов:

  1. Хорошо перемешивают сухие составляющие: цемент, песок, фиброволокно. Затем добавляют их в воду и тщательно перемешивают до образования однородной массы сметанообразной консистенции.
  2. Волокно добавляют в цементное молоко, затем вводят в подготовленный цементный раствор и хорошо перемешивают.
  3. Забрасывают в бетономешалку с готовым раствором. Все тонкости процесса замеса смотрите в этом видео:

бетонного раствора с фибройПриготовление качественного бетонного раствора с фиброй:

  1. Хорошо перемешиваем между собой сухие компоненты: 3 части песка, одна часть цемента. Добавляем половину объема фиброволокна. Перемешиваем все составляющие.
  2. Доливаем воду 400—500 мл на 1 кг цемента.
  3. Небольшими частями добавляем оставшееся волокно и тщательно перемешиваем.

Раствор должен получиться однородной консистенции, как густая сметана.

Выбираем марку цемента согласно классификации в таблице:

Марка бетонаПрименениеРасход цемента в кг на 1 куб бетона
М 100Самая маленькая прочность, используют для бетонирования бордюров, ограждений165
М 200Применяется при монтаже стяжки, фундаментов240
М 300Обладает высокой прочностью, используется для монтажа фундаментов, перекрытий и др.320
М 400Имеет наивысшую прочность, выдерживает несущие мостов и эстакад417

Расход фибры

Количество добавляемых в цементный раствор волокон зависит от требований к стяжке.

Расход фибрыХарактеристика стяжки
1300 гр на куб. мНезначительно повышает связующую функцию и облегчает работу с материалом. Такая пропорция работает, как добавка, незначительно повышающая качество стяжки.
2600 гр на куб. мЗначительно повысится пластичность, устойчивость к проникновению влаги, прочность и срок эксплуатации покрытия.
3800 до 1500 г на куб. мДостигается максимальная эффективность.

Минимальный расход должен быть не менее, чем 300 гр. на кубический метр,

Соотношение количества волокон на определенный объем цемента указан на упаковке или в инструкции к фибре для стяжки.

Если добавить слишком много волокон, то они могут спровоцировать образование трещин и расколов стяжки.

Заливаем стяжку

Рассмотрим, как правильно сделать стяжку с добавлением фибры. Подробнее о заливке полусухой стяжки с волокном из фибры смотрите в этом видео:

с добавлением фибры.Работы начинаем от дальнего угла комнаты. Пол нужно залить в один заход без перерывов.

Этапы работ:

  1. Цементный раствор с фиброй выливаем на пол между направляющими, разравниваем правилом на длинной ручке.
  2. Уплотняем смесь, чтобы вышли пузырьки воздуха и не осталось пустот, с помощью игольчатого валика.
  3. Через сутки вынимаем направляющие, заливаем раствором места, где они находились.

Исключаем сквозняки и пересушивание поверхности. Накрываем стяжку полиэтиленом, каждый день увлажняем бетон, чтобы покрытие не растрескалось.

Нюансы стяжки под теплый пол

а теплый по с фибройЗаливая теплый пол, используйте для приготовления смеси те же пропорции, что и для обычной стяжки

При монтаже теплых полов нужно во избежание потерь тепла уложить тепло- и гидроизоляционный материал до заливки бетонного основания.

Фибра для стяжки теплого пола применяется в тех же пропорциях, как при устройстве обычной стяжки.

Кроме армирующих добавок нужно добавить пластификаторы, которые способствуют получению эластичной стяжки, устойчивой к воздействию высоких температур.

фибро волокноФибра не утяжеляет бетонную смесь

Преимущества использования фиброволокна при монтаже теплого пола:

  • невысокая стоимость и легкость транспортировки;
  • устойчивость к воздействию влаги и других агрессивных веществ;
  • фиброволокно защищает бетон от воздействия внешних негативных факторов и от происходящих внутри физико-химических процессов;
  • повышение устойчивости к ударным и вибрационным нагрузкам;
  • высокая устойчивость к минусовым температурам и воздействию огня.

Добавление фибры в бетонный раствор помогает получить качественное, долговечное основание пола без значительных финансовых и трудовых затрат.

Фибробетон — Википедия

Фибробетонный путепровод, Германия

Фибробетон — разновидность цементного бетона, в котором достаточно равномерно распределены фибра/волокна в качестве армирующего материала.

Фибробетонон — композитный строительный материал для монолитного строительства, получаемый путём добавления фибры в бетон. Фибра — микроарматура, равномерно армирующая бетон во всех плоскостях, повышающая класс бетона, прочность, ударостойкость и снижает образование усадочных трещин. Стальная фибра представляет собой продукт, производимый из стальной проволоки с загнутыми концами (анкерами) на концах, которые прочно сцепляются с бетоном и принимают на себя возникающие напряжения.

Фибра замешивается в бетон непосредственно перед заливкой или же непосредственно на бетонном заводе при производстве бетонной смеси, что является оптимальным с точки зрения технологии.

Фибробетоны применяют в сборных и монолитных конструкциях, работающих на знакопеременные нагрузки. Важнейшая характеристика фибробетона — прочность на растяжение — является не только прямой характеристикой материала, но и косвенной, и отражает его сопротивление другим воздействиям. Ещё одна важная характеристика фибробетона это его долговечность. По показателю работы разрушения фибробетон может в 15-20 раз превосходить бетон[1].

Главный компонент стеклофибробетона, определяющий его уникальные свойства и исключительные эксплуатационные характеристики, — это стекловолокно, выполняющее функции арматуры в бетонной матрице. Между тем бетонные матрицы на основе портландцемента обладают значительной щёлочностью, которая присутствует в бетоне не только на этапе его производства, но и сохраняется в нём впоследствии. Когда стеклянные волокна применяют в качестве армирующего материала в сочетании с портландцементом, волокно должно противостоять воздействию содержащейся в цементе щёлочи в течение длительного времени. Волокно из обычного алюмоборосиликатного стекла не стойко в щёлочной среде бетона, поэтому для армирования используют стекло другого химического состава — на базе циркония[2].

Сталь и другие металлы[править | править код]

Стальная фибровая арматура применяется в монолитных железобетонных конструкциях и сборных конструкциях заводского изготовления.

Несмотря на широкое многообразие имеющихся типоразмеров стальной фибры, в основном применяемые стальные волокна различной формы имеют Ø 0,2–1,2 мм и длину от 5 до 12 см не могут, в силу различных факторов, удовлетворительно использоваться для создания тонкослойных покрытий. Так, экспериментально подтверждено, что диаметр используемого фибрового волокна определяет начальную ширину раскрытия трещин в композите: при использовании стальных фибр Ø 0,3 мм трещины имеют характер местных разрывов, размер их не превышает 1-3 мкм; повышение диаметра волокон до Ø 0,9 мм приводит в тех же условиях к увеличению начальной ширины трещины до 7-10 мкм[3].

В связи со слабой адгезией металла и цементной матрицы, металлическую фибру для увеличения анкерности выпускают разной конфигурации: волнистую, с расплющенными и загнутыми концами.

Базальт[править | править код]

Имеет высокий модуль упругости и хорошие показатели прочности на разрыв. В последние десятилетия разработаны новые технологические решения, позволяющие снизить стоимость изготовления базальтовой фибры, ввиду чего в настоящее время она составляет достаточно серьёзную конкуренцию стальным волокнам[4].

Главной отличительной чертой базальтофибробетона является его высокая прочность для всех видов напряженных состояний и способность переносить большие деформации в упругом состоянии[5]. Конструкции из базальтобетона обладают более высокой прочностью и деформативностью, нежели аналогичные конструкции армоцемента с арматурой из стальных сеток, так как армирующее их базальтовое волокно не только превосходит стальные сетки по указанным параметрам, но и обеспечивает более высокую степень дисперсности армирования цементного камня.

Следует отметить, что при твердении цементного камня поверхность тонкого базальтового волокна разрушается. Прочность волокна уменьшается, однако образующиеся раковины повышают прочность сцепления цементного камня и волокна, ввиду чего возрастает и прочность самого изделия. При использовании толстых волокон их прочность не изменяется.

Стекло[править | править код]

Стеклянные циркониевые тонкие волокна диаметром 8–10 мкм по прочности соответствуют высокоуглеродистой холоднотянутой проволоке, плотность же их в несколько раз меньше. Модуль упругости примерно втрое превышает модуль упругости матрицы. Однако производство тонких волокон и объединение их в комплексные нити требует дорогостоящего оборудования[6]. Кроме того, при производстве стекла используется многокомпонентная шихта, что сказывается на стоимости фибр. Для равномерного распределения таких волокон в композиции требуются специальные методы (напыление, контактное формование) и оборудование, повышающие стоимость конструкции.

Полипропилен[править | править код]

Полипропиленовые волокна характеризуются надёжным сцеплением с бетонной матрицей, однако в то же время им свойственна повышенная деформативность, поскольку модуль упругости таких волокон составляет не более 1/4 модуля упругости бетонной матрицы. Поэтому, такие волокна не могут использоваться в качестве эффективной несущей арматуры и применяются, как правило, при дополнительном (конструктивном) армировании, способствующем предотвращению повреждений и выколов в бетоне при транспортировании и монтаже изделий, частичному повышению ударной прочности, сопротивления истиранию и т. д. Вместе с тем в ходе многолетних исследований[7] было установлено, что изделия, армированные полипропиленовыми волокнами, характеризуются значительными деформациями даже при небольших нагрузках растяжения, что объясняется низкой адгезией полипропилена в цементной матрице. Кроме того, такие изделия с течением времени теряют свои прочностные свойства, имеют высокую истираемость поверхности.

  1. ↑ «Фибробетон: технико-экономическая эффективность применения». Журнал «Промышленное и гражданское строительство», №9/2002, 17.07.2006.
  2. ↑ К. А. Сарайкина, В. А. Шаманов. «Дисперсное армирование бетонов» // Вестник ПГТУ. Урбанистика. 2011. №2.
  3. ↑ 215. В. В. Шишкин, С. В. Скориков, А. В. «Акиншина Возможности использования дисперсноармированных цементных композитов для восстановления трубопроводов водоснабжения» // Наука. Инновации. Технологии. 2013. №1.
  4. ↑ Новицкий А. Г., Ефремов М. В. «Особенности получения непрерывного химически стойкого базальтового волокна» // Хімічна промисловість України. 2003. № 1. С. 24–27.
  5. ↑ Канаев С. Ф. «Базальтофибробетон на грубых базальтовых волокнах». Обзор. М.: НПО «Композит», 1990.
  6. ↑ «Стеклофибробетон и конструкции из него». Серия «Строительные материалы». Вып. 5. ВНИИНТПИ, М., 1991.
  7. ↑ Новицкий А. Г., Ефремов М. В. «Аспекты применения базальтовой фибры для армирования бетонов» // Будівельнi матеріали, вироби та санітарна техніка. Вып. 36. 2010.

Фибра

Стяжка пола полусухой технологией - до 300 метров идеально ровного пола за 1 деньСтяжка пола полусухой технологией - до 300 метров идеально ровного пола за 1 день

Здравствуйте, а вы знаете, чем  можно заменить армирование  железобетонных конструкций, стяжки или увеличить прочность наливного пола. В наше время есть альтернатива традиционному армированию это фибра. фибрафибра

Фибра есть металлическая, полипропиленовая, из базальтового волокна, из стекловолокна в этой статье разберемся об их назначениях, области применения и я расскажу о своем опыте работы с данным материалом.

Металлическая фибра

Фибра стальная изготавливают из стального листа, из нержавеющей стальной проволоки и жаропрочной стали может выдерживать без разрыва кратковременную нагрузку до 850 МПа.

Металлическая фибра в бетоне так же, как и арматурный каркас принимает нагрузки в конструкциях на растяжение, изгиб. Стальная фибра чаще всего это металлические полоски различной формы (волнообразные, с загнутыми краями, и т.д.), которые добавляются в бетон. Заменяет металлические сетки и  каркас из арматурного прута.

Добавляют металлическую фибру в автобетоносмеситель с бетоном на заводе, чтоб за время доставки смеси на строительную площадку она тщательно перемешалась. Если такой возможности нет то на строительной площадке, высыпают фибру в миксер и  перемешивают минут 15-20.

Металлическая фибра образует с бетоном однородную массу и если сравнить с металлическим каркасом, то шаг ячеек его был бы очень маленький. Из-за зигзагообразной формы фибра, образует очень прочное сцепление с бетоном по сравнению с обычной арматурой.

Какими свойствами обладает бетон с фиброй это: высокая сопротивляемость  статическим и динамическим нагрузкам, трещиностойкость, долговечность (износоустойчивость), прочность, увеличение вибрационной стойкости бетона.

Насчет трещиностойкости можно поспорить, заливали бетонные полы на основание, который заказчик плохо подготовил (не уплотнил) и через неделю может не много больше из-за просадки основания бетон потрескался и поломался.

Но то, что он прочный здесь соглашусь, приходилось демонтировать, выдалбливать отбойником фибробетон, откалывался  мелкими кусочками и очень медленно. Металлическая фибра связывает кусочки бетона и они плохо крошатся и ломаются. Намного легче демонтировать бетон с армокаркасом.

Не могу точно сказать, так как я не проектировщик, но производители фибры утверждают, что  за счет этого материала можно снизить толщину бетонных конструкций, не в ущерб расчетным характеристикам.

Какие преимущества в применение фибры в сравнение с вязкой арматурного каркаса? Первое это уменьшение времени на подготовку, связать двойную арматурную сетку на бетонные полы площадью 250 квадратных метров на эту работу будет потрачено приблизительно неделя. Снижаются трудозатраты на арматурные работы. Второе экономия денег  на арматуре и ее транспортировку. В третьих работы по  армированию конструкций здания постоянно остаются отходы в виде обрезков арматуры, если используют фибру, то отходов нет.

По статистике экономия средств достигает 15%, а трудоемкость возведения конструкций снижается на четверть.

В моей рабочей практике металлическую фибру применяли в бетонных полах, на некоторых сайтах производителей фибры пишут, что ею можно заменять арматурный каркас монолитных сооружений туннелей, метро, взлетные полосы на аэродромах, сейфохранилища, взрывоопасные объекты.

Из фибробетона изготавливают отдельные конструкции элементы стеновых панелей, плиты перекрытия, дорожные плиты, железнодорожные шпалы, тюбинги метро, кольца, трубы, и пр. Если эту статью читают строители, которые применяли фибробетон в других конструкциях кроме полов, то мне интересно было бы узнать ваше мнение и второй вопрос какие конструкции заливали этим материалом, пишите в комментариях.

Расход металлической фибры

Расход фибры рассчитываются исходя из нагрузок действующие на конструкцию. Приблизительно содержание фибры в смеси в  такое: для промышленных полов — 20-25 кг/куб.м, для конструкций жилых домов — 25-50 кг/куб.м.

Полипропиленовая фибра

Полипропиленовая фибраПолипропиленовая фибра

Фибра полипропиленовая на вид тонкие белые волокна полипропилена  различных размеров. Так же как и металлическая фибра, полипропилен инертное вещество, устойчиво к щелочам и различным химическим веществам. Применяют в бетонах, цементно-песчаных растворах и наливных полах.

Добавление в бетон полипропиленовой фибры увеличиваются такие же свойства, как и с металлической фиброй. Можно добавить еще одно свойство это снижение водопоглащения. Полипропиленовые волокна уменьшают количество отверстий образованных от выступления воды в процессе набора прочности бетоном, благодаря этому вода, химические вещества впитываются не значительно.

Такой бетон используют в строительстве сооружений, где нужна повышенная прочность к агрессивным средам: водохранилища, отстойники, морские ограждения, мосты, где используют антиобледеняющие соли.

Я живу в Балаково, если вы житель этого города и задумались применить фибробетон с полипропиленовой фиброй, то приобрести ее не будет большой проблемой так как ее здесь производят. Кроме бетона    для увеличения прочности, трещиностойкости данный материал применяют в стяжках из цементно-песчаного раствора вместо армирования или в наливных полах.

Случай из моей практике в Москве торговый центр «Атриум» напротив Курского вокзала надо было покрасить полы эпоксидной краской. Проблема была в том, что заказчик сделал стяжку, которая не соответствовала  прочности для эпоксидного покрытия, была в трещинах и легко царапалась металлическим гвоздем.

Решили на этой стяжке сделать наливные полы с добавлением фибры.  Размешивая наливную смесь, добавляли полипропиленовую фибру. Наливные полы получились гладкие, фибра не выступала и прочные. Дня через 3-4 нанесли эпоксидное покрытие, которое пролежала весь гарантийный срок без трещин.

Базальтовая фибра

Базальтовая фибра состоит из волокон природного камня, имеет высокие показатели по химической стойкости. Базальтовые волокна 100 процентов стойкие к воде, 96 % к щелочи, 94% к кислоте. Фибра имеет модуль упругости от 7 до 60 Гпа, прочность на растяжение от 600 до 3500 МПа. Применяют в бетоне, цементно-песчаных растворах.

Фибра из стекловолокна

На вид это тонкие отрезки стеклонити белого цвета. Экологически чистый материал, не гниет. Как и применение фибр из вышеперечисленных материалов армирование стекловолокном увеличивает прочностные характеристики бетоном на 5 раз.

Стеклофибробетон увеличивает такое свойство, как морозоустойчивость. Выдерживает температуру до -50 градусов и многочисленные циклы замерзания и оттаивания.

С уважением, Олег Клышко.

все виды фиброволокна на сайте фиброблок.рувсе виды фиброволокна на сайте фиброблок.ру

Cтатьи похожей тематики:

Ваша благодарность за мою статью это клик по любой кнопке ниже. Спасибо!

 

Фибра для бетона — описание, свойства, преимущества, характеристики

 

Базальтовая фибра для бетона — дисперсное армирование бетонов базальтовыми волокнами

Технология дисперсного армирования бетонов фиброй становится все более популярной. Её актуальность обусловлена прежде всего тем, что засчет этого можно значительно повысить физико – механические свойства бетонных конструкций. Фибра для бетона является так называемой «дисперсной арматурой», её волокна сцепляются с бетоном и армируют его по всему объему, благодаря чему повышаются прочностные характеристики конструкции. Получившийся композиционный материал называется – фибробетон.

Доставка базальтового фиброволокна от 100 кг в любой регион напрямую с завода без наценок

Основные и наиболее распространенные виды фибры для бетона:

  1. Базальтовая фибра
  2. Металлическая фибра(стальная,стальная анкерная, волновая и т.д.)
  3. Полипропиленовая фибра
  4. Полиамидная фибра
  5. Углеродная фибра

Влияние базальтовой фибры, на характеристики бетона

Базальтовая фибра для бетона производится из горных вулканических пород, посредством их расплава при высокой температуре, таким образом становится ясно, что этот материал, изготавливается из высокопрочного природного материала, который не боится воздействия воды, не подвержен коррозии, имеет высокую огнестойкость, и стойкость к щелочам и химикатам.

 

Базальт имеет схожую структуру с цементным камнем и обладает природной естественной шероховатостью, что способствует высокому сцеплению волокон с бетонной матрицей.

 

Базальтовые волокна превосходят по прочности стальные и полипропиленовые, а засчет низкой плотности, по сравнению со стальными, их количество в бетоне будет значительно больше, также волокна базальта имеют меньший коэффициент удлинения чем полипропиленовые, что гораздо лучше препятствует образованию трещин в бетоне, во время усадки, и при воздействии высоких нагрузок.

Испытания по определению воздействия базальтовой фибры на структуру бетона

В ходе испытаний бетонов армированных базальтовой фиброй было установлено:

  1. На границе цементного камня и волокон базальта, проходит хемосорбционное взаимодействие с появлением вновьобразовывающихся новообразований, относящихся к низкоосновным гидросиликатам кальция.
  2. Базальтовая фибра состоит из еще более тонких волокон. На их поверхности в местах дефектов образующихся от механических воздействий происходит процесс кристаллизации, появляется сеть тонких гексагональных пластин и игольчатых кристаллов, которые срастаются со сферическими зернами цементной системы, дополнительно усиливая действие волокна как дисперсной арматуры. Волокно имеет полую структуру в торцевую часть которой проникают продукты гидратации с образованием кристаллических сростков. Благодаря этому происходит увеличение прочности цементного камня.

Фибра в бетоне вступает в такую реакцию с камнем цемента, что становится с ним единым целым, придавая ему тем самым дополнительные прочностные характеристики.

Структура базальтофибробетона схожа с бетоном, армированным металлической сеткой, но базальтофибробетон намного прочнее, так как базальтовая фибра в бетоне обладает более высокой степенью дисперсности в армируемом камне, бетон, который армирован базальтовой фиброй, может выдерживать большие деформационные напряжения, засчет того, что волокно не подвержено пластическим деформациям при напряжении, а его модуль упругости выше чем у стали.

Повышение прочности цементного камня также происходит благодаря влиянию волокон базальта на места концентрации напряжений которые ослаблены из-за структурных дефектов, либо вследствие повышенной пористости.

Результаты испытаний по воздействию базальтовых волокон на прочностные характеристики бетонных конструкций

Влиянием фибры на бетон, его прочностные характеристики и физико – механические свойства, занимаются ученые во многих строительных и научно-исследовательских институтах мира. Так во время проведения работ в НИИЖБ, по изучению влияния базальтовой фибры на мелкозернистый бетон, были сделаны следующе выводы:

  1. Базальтофибробетон при изгибе выдерживает более высокие нагрузки, чем не армированный бетон. При этом разрушение носит упруго-пластичный характер, в то время как неармированный бетон разрушается хрупко.
  2. Доказано экспериментальным путем, что базальтовое волокно снижает усадочные деформации при твердении, особенно на ранних сроках, что способствует повышению сопротивления к восприятию деструктивных напряжений внутри тела бетона при переменном замораживании и оттаивании, а, следовательно,получению бетонов повышенной морозостойкости:
  3. Фибра в бетоне снижает его проницаемость. Марка по водонепроницаемости может достигать значений W16, в зависимости от пропорции и марки бетона. Коэффициент диффузионной проницаемости для хлоридов равен 1х10″9 см2/сек, что соответствует особо плотному бетону:
  4. Срок эксплуатации бетонных изделий и конструкций, армированных базальтовой фиброй увеличивается в два раза, это достигается засчет улучшения физико-технических свойств базальтофибробетона, и увеличенного срока службы.

Заключение о влиянии базальтовой фибры на свойства бетона

Исходя из этого, можно сделать вывод, что базальтовая фибра в бетоне, значительно повышает все его характеристики, и позволяет получить более прочные и надежные конструкции, с увеличенным сроком эксплуатации, благодаря чему достигается значительный экономический эффект, бетонная конструкция армированная базальтовым фиброволокном способна выдерживать более мощные динамические и ударные нагрузки, обладает повышенной коррозионной стойкостью.

Базальтофибробетон характеризуется увеличенной водонепроницаемостью и морозостойкостью, способен дольше выдерживать воздействие высоких температур и открытого огня.

Поверхность бетона армированного базальтовой фиброй имеет повышенный коэффициент истираемости – на 60%.

Добавление базальтового фиброволокна в бетон, повышает его прочность в критический момент на стадии высыхания в первые 2 – 6 часов после усадки и борется с трещинообразованием, вероятность появления усадочных трещин меньше на 95%.

Купить базальтовую фибру в Краснодаре Вы сможете в компании «Энрост». Мы реализуем фибру оптом и в розницу, осуществляем доставку продукции на объект, работаем наличным и безналичным расчетом с НДС. Дополнительную консультацию Вы можете получить, позвонив по нашим телефонам.

Скачайте полную информацию по базальтовой фибре для бетона

 


Понравилась статья? Не ленись — поделись!

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *