220 напряжение – Питающее напряжение 220/230 В однофазное и 380/400 В трехфазное в РФ. Почему 220 и 230 В, 380 В и 400В это одно и то же. 50Гц / 60Гц. Почему так. Жаргон электриков и здравый смысл.

Содержание

Питающее напряжение 220/230 В однофазное и 380/400 В трехфазное в РФ. Почему 220 и 230 В, 380 В и 400В это одно и то же. 50Гц / 60Гц. Почему так. Жаргон электриков и здравый смысл.

Питающее напряжение 220/230 В однофазное и 380/400 В трехфазное в РФ. Почему 220 и 230 В, 380 В и 400В это одно и то же. 50Гц / 60Гц. Почему питающее напряжение в электрических сетях пременное? Почему передающие сети (линии электропередач, ЛЭП) имеют очень высокое напряжение (высоковольтные)? Почему в в сетях потребителей напряжение ниже? Почему так. Жаргон электриков и здравый смысл.

Во первых, почему питающее напряжение в электрических сетях пременное, а не постоянное? Первые генераторы в конце 19-го века выдавали постоянное напряжение, пока кто-то (умный!) не сообразил, что производить переменное при генерации и выпрямлять при необходимости его в точках потребления проще, чем производить постоянное при генерации и рожать переменное в точках потребления.

Во вторых, почему 50 Гц? Да просто у немцев так получилось, в начале 20 века. Нет тут особого смысла. В США и некоторых других странах 60 Гц. (см. справку проекта dpva.ru)

В третьих, почему передающие сети (линии электропередач) имеют очень высокое напряжение? Тут смысл есть, если вспомнить основные формулы электротехники, то: потери мощности при транспортирове равны d(P)=I2*R, а полная передаваемая мощность равна P=I*U. Доля потерь от общей мощности выражается как d(P)/P=I*R/U. Минимальная доля потерь общей мощности, т.о. будет при максимальном напряжении. Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения:

  • от 1000 кВ и выше (1150 кВ, 1500 кВ) — ультравысокий
  • 1000 кВ, 500 кВ, 330 кВ — сверхвысокий
  • 220 кВ, 110 кВ — ВН, высокое напряжение
  • 35 кВ — СН-1, среднее первое напряжение
  • 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение
  • 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.

В четвертых: что такое номинальное обозначение В=»Вольт» ( А=»Ампер») в цепях переменного напряжения (тока)? Это действующее=эффективное=среднеквадратическое= среднеквадратичное значение напряжения (тока) , т.е. такое значение постоянного напряжения (тока) , которое даст такую-же тепловую мощность на аналогичном сопротивлении. Показывающие вольтметры и амперметры дают именно это значение. Максимальные амплитудные значения (например с осцилографа) по модулю всегда выше действующего.

В пятых, почему в в сетях потребителей напряжение ниже? Тут смысл тоже есть. Практически допустимые напряжения определялись доступными изоляционными материалами и их электрической прочностью. А потом уже ничего было не поменять.

Что такое «трехфазное напряжение 380/400 В и однофазное напряжение 220/230 В»? Тут внимание. Строго говоря, в большинстве случаев ( но не во всех) под трехфазной бытовой сетью в РФ понимают сеть 220(230)/380(400)В (изредка встречаются бытовые сети 127/220 В и промышленные 380/660 В!!!). Неправильные, но встречающиеся обозначения: 380/220В;220/127 В; 660/380 В!!! Итак, далее говорим об обычной сети 220(230)/380(400)Вольт, для работы с остальными — лучше бы Вам быть электриком. Итак

Электрическое напряжение — Википедия

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — скалярная физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки

A в точку B[1][2].

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из вкладов двух работ: работы электрических сил AABel{\displaystyle A_{AB}^{el}} и работы сторонних сил AABex{\displaystyle A_{AB}^{ex}}. Если на участке цепи не действуют сторонние силы (то есть AABex=0{\displaystyle A_{AB}^{ex}=0}), работа по перемещению включает только работу потенциального электрического поля AABel{\displaystyle A_{AB}^{el}} (которая не зависит от пути, по которому перемещается заряд), и электрическое напряжение UAB{\displaystyle U_{AB}} между точками A и B совпадает с разностью потенциалов между этими точками (поскольку φA−φB=AABel/q{\displaystyle \varphi _{A}-\varphi _{B}=A_{AB}^{el}/q}). В общем случае напряжение UAB{\displaystyle U_{AB}} между точками A и B отличается от разницы потенциалов между этими точками[3] на работу сторонних сил по перемещению единичного положительного заряда. Эту работу называют электродвижущей силой EAB{\displaystyle {\mathcal {E}}_{AB}} на данном участке цепи: EAB=AABex/q.{\displaystyle {\mathcal {E}}_{AB}=A_{AB}^{ex}/q.}

UAB=φA−φB+EAB.{\displaystyle U_{AB}=\varphi _{A}-\varphi _{B}+{\mathcal {E}}_{AB}.}

Определение электрического напряжения можно записать в другой форме. Для этого нужно представить работу AABef{\displaystyle A_{AB}^{ef}} как интеграл вдоль траектории L, проложенной из точки A в точку B.

UAB=∫LE→efdl→{\displaystyle U_{AB}=\int \limits _{L}{\vec {E}}_{ef}d{\vec {l}}} — интеграл от проекции эффективной напряжённости поля E→ef{\displaystyle {\vec {E}}_{ef}} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора dl→{\displaystyle d{\vec {l}}} в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Размерность электрического напряжения в Международной системе величин (англ. International System of Quantities, ISQ), на которой основана Международная система единиц (СИ), — L2MT-3I-1. Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).

Понятие напряжение ввёл Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 году эмпирического закона Ома: U=IR{\displaystyle U\!=IR}.

Напряжение в цепи постоянного тока между точками A и B — работа, которую совершает электрическое поле при переносе пробного положительного заряда из точки A в точку B.

U\!=IR

Для описания цепей переменного тока применяются следующие напряжения:

  • мгновенное напряжение;
  • амплитудное значение напряжения;
  • среднее значение напряжения;
  • среднеквадратическое значение напряжения;
  • средневыпрямленное значение напряжения.

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Зависит от времени (является функцией времени):

u=u(t).{\displaystyle u=u(t).}

Амплитудное значение напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM=max(|u(t)|).{\displaystyle U_{M}=\max(|u(t)|).}

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t)=UMsin⁡(ωt+ϕ).{\displaystyle u(t)=U_{M}\sin(\omega t+\phi ).}

Для сети переменного синусоидального напряжения со среднеквадратическим значением 220 В амплитудное напряжение равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения (постоянная составляющая напряжения) есть напряжение, определяемое за весь период колебаний, как:

Um=1T∫0Tu(t)dt.{\displaystyle U_{m}={\frac {1}{T}}\int _{0}^{T}u(t)dt.}

Для синусоиды среднее значение напряжения равно нулю.

Среднеквадратическое значение напряжения (устаревшие наименования: действующее, эффективное) есть напряжение, определяемое за весь период колебаний, как:

Uq=1T∫0Tu2(t)dt.{\displaystyle U_{q}={\sqrt {{\frac {1}{T}}\int \limits _{0}^{T}u^{2}(t)dt}}.}

Среднеквадратическое значение напряжения наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение.

Для синусоидального напряжения справедливо равенство:

Uq=12UM≈0,707UM;UM=2Uq≈1,414Uq.{\displaystyle U_{q}={1 \over {\sqrt {2}}}U_{M}\approx 0,707U_{M};\qquad U_{M}={\sqrt {2}}U_{q}\approx 1,414U_{q}.}

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно среднеквадратическое значение напряжения, и все вольтметры проградуированы, исходя из его определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратическое, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения есть среднее значение модуля напряжения:

Um=1T∫0T|u(t)|dt.{\displaystyle U_{m}={\frac {1}{T}}\int \limits _{0}^{T}|u(t)|dt.}

Для синусоидального напряжения справедливо равенство:

Um=2πUM(≈0,637UM)=22πUq(≈0,9Uq).{\displaystyle U_{m}={2 \over \pi }U_{M}(\approx 0,637U_{M})={2{\sqrt {2}} \over \pi }U_{q}(\approx 0,9U_{q}).}

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратическим значениям.

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3{\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

ОбъектТип напряженияЗначение (на вводе потребителя)Значение (на выходе источника)
ЭлектрокардиограммаИмпульсное1—2 мВ
Телевизионная антеннаПеременное высокочастотное1—100 мВ
Гальванический цинковый элемент типа АА («пальчиковый»)Постоянное1,5 В
Литиевый гальванический элементПостоянное3—3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA)
Логические сигналы компьютерных компонентовИмпульсное3,3 В; 5 В
Батарейка типа 6F22 («Крона»)Постоянное9 В
Силовое питание компьютерных компонентовПостоянное5 В, 12 В
Электрооборудование автомобилейПостоянное12/24 В
Блок питания ноутбука и жидкокристаллических мониторовПостоянное19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условияхПеременное36—42 В
Напряжение наиболее стабильного горения свечи ЯблочковаПостоянное55 В
Напряжение в телефонной линии (при опущенной трубке)Постоянное60 В
Напряжение в электросети ЯпонииПеременное трёхфазное100/172 В
Напряжение в домашних электросетях СШАПеременное трёхфазное120 В / 240 В (сплит-фаза[en])
Напряжение в бытовых электросетях РоссииПеременное трёхфазное220/380 В230/400 В
Разряд электрического скатаПостоянноедо 200—250 В
Контактная сеть трамвая и троллейбусаПостоянное550 В600 В
Разряд электрического угряПостоянноедо 650 В
Контактная сеть метрополитенаПостоянное750 В825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток)Постоянное3 кВ3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощностиПеременное трёхфазное6—20 кВ6,6—22 кВ
Генераторы электростанций, мощные электродвигателиПеременное трёхфазное10—35 кВ
На аноде кинескопаПостоянное7—30 кВ
Статическое электричествоПостоянное1—100 кВ
На свече зажигания автомобиляИмпульсное10—25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток)Переменное25 кВ27,5 кВ
Пробой воздуха на расстоянии 1 см10—20 кВ
Катушка РумкорфаИмпульсноедо 50 кВ
Пробой слоя трансформаторного масла толщиной 1 см100—200 кВ
Воздушная линия электропередачи большой мощностиПеременное трёхфазное35 кВ, 110 кВ, 220 кВ, 330 кВ38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машинаПостоянное50—500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные)Переменное трёхфазное500 кВ, 750 кВ, 1150 кВ545 кВ, 800 кВ, 1250 кВ
Трансформатор ТеслаИмпульсное высокочастотноедо нескольких МВ
Генератор Ван де ГраафаПостоянноедо 7 МВ
Грозовое облакоПостоянноеОт 2 до 10 ГВ

Автоматика. Электроэнергия. Электричество. Электрика. Электроснабжение. Программирование

В нашей бытовой электросети используется напряжение 220 Вольт частотой 50 Герц переменного тока, именно от него питаются все домашние электроприборы. Почему именно эта цифра, а не 12 Вольт или 700 Вольт. Решение заключается в том, что именно это напряжение является самым рациональным.

Мощность, которая выделяется на нагрузке, вычисляется произведением тока на напряжение. Получается, что любую мощность можно получить различными произведениями тока на напряжение. Например, у нас имеется лампочка накаливания 100 Ватт. Чтобы она работала на полную мощность, можно использовать напряжение 1 В и ток 100 А, или 12 В и 8,3 А, или 700 В и 0,14 А. В итоге мы получим наши 100 Вт. Главное, чтобы у нагрузки было такое сопротивление, чтобы при задуманном напряжении, через неё проходил нужный ток.

В нашей бытовой электросети используется напряжение 220 Вольт частотой 50 Герц переменного тока, именно от него питаются все домашние электроприборы. Почему именно эта цифра, а не 12 Вольт или 700 Вольт. Решение заключается в том, что именно это напряжение является самым рациональным.

Мощность, которая выделяется на нагрузке, вычисляется произведением тока на напряжение. Получается, что любую мощность можно получить различными произведениями тока на напряжение. Например, у нас имеется лампочка накаливания 100 Ватт. Чтобы она работала на полную мощность, можно использовать напряжение 1 В и ток 100 А, или 12 В и 8,3 А, или 700 В и 0,14 А. В итоге мы получим наши 100 Вт. Главное, чтобы у нагрузки было такое сопротивление, чтобы при задуманном напряжении, через неё проходил нужный ток.

Мощность будет выделяться не только на нашей 100 Вт лампе, но и на проводах, которые к ней идут. Если мощность в лампе будет преобразовываться в свет и тепло, то мощность на проводах будет преобразовываться только в тепло, которое нам не нужно. Предположим, сопротивление проводов равно 1 Ом. Если мы нашу лампу запитаем от 10 В, то для получения 100 Вт мощности, через лампу пройдёт 100 Вт / 10 В= 10 А ток. Получается, что нагрузка будет должна сама быть 10 В / 10 А = 1 Ом, как и провода. Значит на проводах будет в пустую теряться половина питающего напряжения и мощности.

Если мощность в 100 Вт получать сочетанием 220 В и током 0,45 А, то на проводах с сопротивлением в 1 Ом будет падение напряжения 0,45 * 1 = 0,45 В. Таким падением напряжения можно пренебречь.

Конечно, при использование низкого напряжения можно уменьшить потери используя более толстые проводники. Как известно, чем толще сечение проводника, тем меньше его сопротивление. Но, такие проводники выйдут слишком дорогими.

Если же наоборот в бытовой электросети использовать очень большое напряжение. Казалось бы, чем выше напряжение, тем меньший ток требуется для передачи той же самой мощности, и проводники можно делать тонкими экономя на металле. Не так всё просто. Чем выше напряжение, тем больше у него пробой, и может пробить изоляцию, а это весьма опасно для здоровья человека. Поэтому высоковольтное напряжение применяют для передачи электроэнергии от электростанций, а к нам в дом идёт уже 220 В, которое понижают при помощи трансформаторов. Такой способ передачи электроэнергии экономит большое количество металла.

220 Вольт является компромиссом, золотой серединой (относительно безопасно, т.к. изоляцию не пробивает, позволяет использовать тонкие проводники). В США используется напряжение 110 В, а в Японии 100 В.

(Просмотрено 9740 раз)

Почему напряжение 220 Вольт 🚩 220 вольт что это 🚩 Естественные науки


Мощность, выделяемая на нагрузке, равна произведению напряжения на ней и проходящего через нее тока. Отсюда следует, что одну и ту же мощность можно получить, используя бесконечное количество сочетаний токов и напряжений — главное, чтобы произведение всякий раз получалось одинаковым. Например, мощность в 100 Вт может быть получена при 1 В и 100 А, или 50 В и 2 А, или при 200 В и 0,5 А, и так далее. Главное — изготовить нагрузку с таким сопротивлением, чтобы при желаемом напряжении через нее проходил необходимый ток (согласно закону Ома).

Но мощность выделяется не только на нагрузке, но и на подводящих проводах. Это — вредное явление, поскольку эта мощность теряется бесполезно. Теперь представьте себе, что для питания нагрузки мощностью в 100 Вт используются проводники с суммарным сопротивлением в 1 Ом. Если нагрузка питается напряжением в 10 В, то для получения такой мощности через нее придется пропустить ток в 10 А. То есть, нагрузка будет должна сама иметь сопротивление в 1 Ом, сопоставимое с сопротивлением проводников. А значит, на них будет теряться ровно половина питающего напряжения, и, следовательно, мощности. Чтобы при такой схеме питания нагрузка развила 100 Вт, придется повысить напряжение с 10 до 20 В, причем, на нагрев проводников будет бесполезно расходоваться еще 10 В * 10 А = 100 Вт.

Если же 100 Вт получаются при сочетании напряжения в 200 В и тока в 0,5 А, на проводниках сопротивлением в 1 Ом будет падать напряжение, составляющее всего 0,5 В, а мощность, выделяемая на них, составит всего 0,5 В * 0,5 А = 0,25 Вт. Согласитесь, такой потерей вполне можно пренебречь.

Казалось бы, при 12-вольтовом питании тоже возможно уменьшить потери, применив более толстые проводники, имеющие меньшее сопротивление. Но они получатся очень дорогими. Поэтому низковольтное питание применяют лишь там, где проводники являются очень короткими, а значит, их можно позволить себе сделать толстыми. Например, в компьютерах такие проводники расположены между блоком питания и материнской платой, в транспортных средствах — между аккумулятором и электрооборудованием.

А что будет, если, наоборот, применить в домашней электросети очень большое напряжение? Ведь тогда проводники можно будет сделать очень тонкими. Оказывается, такое решение тоже непригодно для практического применения. Высокое напряжение способно пробивать изоляцию. В этом случае опасно было бы касаться не только оголенных проводов, но и изолированных. Поэтому высоковольтными делают лишь линии электропередачи, что позволяет экономить огромное количество металла. Перед подачей в дома это напряжение понижают до 220 В при помощи трансформаторов.

Напряжение в 240 В, как компромиссное (с одной стороны, не пробивающее изоляцию, а с другой, позволяющее использовать для бытовой проводки сравнительно тонкие проводники), предложил использовать Никола Тесла. Но в США, где он жил и работал, к этому предложению не прислушались. Там до сих пор применяют напряжение в 110 В — тоже опасное, но в меньшей степени. В Западной Европе напряжение в сети составляет 240 В, то есть, ровно столько, сколько предложил Тесла. В СССР первоначально использовались два напряжения: 220 В в сельской местности и 127 в городах, затем было принято решение перевести на первое из этих напряжений и города. Оно и сегодня повсеместно используется в России и странах СНГ. Наиболее низковольтной же является японская электросеть. Напряжение в ней составляет всего 100 В.

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Во первых почему питающее напряжение в электрических сетях пременное, а не постоянное? Первые генераторы в конце 19-го века выдавали постоянное напряжение, пока кто-то (умный!) не сообразил, что производить переменное при генерации и выпрямлять при необходимости его в точках потребления проще, чем производить постоянное при генерации и рожать переменное в точках потребления.

Во вторых, почему 50 Гц? Да просто у немцев так получилось, в начале 20 века. Нет тут особого смысла. В США и некоторых других странах 60 Гц. (см. справку проекта TehTab.ru)

В третьих, почему передающие сети (линии электропередач) имеют очень высокое напряжение? Тут смысл есть, если вспомнить основные формулы электротехники, то: потери мощности при транспортирове равны d(P)=I

2*R, а полная передаваемая мощность равна P=I*U. Доля потерь от общей мощности выражается как d(P)/P=I*R/U. Минимальная доля потерь общей мощности, т.о. будет при максимальном напряжении. Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения:

  • от 1000 кВ и выше (1150 кВ, 1500 кВ) — ультравысокий
  • 1000 кВ, 500 кВ, 330 кВ — сверхвысокий
  • 220 кВ, 110 кВ — ВН, высокое напряжение
  • 35 кВ — СН-1, среднее первое напряжение
  • 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение
  • 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.

В четвертых: что такое номинальное обозначение В=»Вольт» ( А=»Ампер») в цепях переменного напряжения (тока)? Это действующее=эффективное=среднеквадратическое= среднеквадратичное значение напряжения (тока) , т.е. такое значение постоянного напряжения (тока) , которое даст такую-же тепловую мощность на аналогичном сопротивлении. Показывающие вольтметры и амперметры дают именно это значение. Максимальные амплитудные значения (например с осцилографа) по модулю всегда выше действующего.

В пятых, почему в в сетях потребителей напряжение ниже? Тут смысл тоже есть. Практически допустимые напряжения определялись доступными изоляционными материалами и их электрической прочностью. А потом уже ничего было не поменять.

Что такое «трехфазное напряжение 380 В и однофазное напряжение 220 В»? Тут внимание. Строго говоря, в большинстве случаев ( но не во всех) под трехфазной бытовой сетью в РФ понимают сеть 220/380В (изредка встречаются бытовые сети 127/220 В и промышленные 380/660 В!!!). Неправильные, но встречающиеся обозначения: 380/220В;220/127 В; 660/380 В!!! Итак, далее говорим об обычной сети 220/380Вольт, для работы с остальными — лучше бы Вам быть электриком. Итак для такой сети:

  • Наша домашняя (РФ, да и СНГ…) сеть 220/380В-50Гц, в Европе 230/400В-50Гц (240/420В-50Гц в Италии и Испании), в США — частота 60Гц, а номиналы вообще другие
  • К Вам придет как минимум 4 провода: 3 линейных («фазы») и один нейтральный (вовсе не обязательно с нулевым потенциалом!!!)-если у Вас только 3 линейных провода, лучше зовите инженера-электрика.
  • 220В — это действующее напряжение между любой из «фаз»=линейный провод и нейтралью (фазное напряжение).Нейтраль — это не ноль!
  • 380В — это действующее значение между любыми двумя «фазами»=линейными проводами (линейное напряжение)

Проект DPVA.info предупреждает: если Вы не имеете представления о мерах безопасности при работе с электроустановками (см. ПУЭ), лучше сами и не начинайте.

  • Нейтраль (всех видов) не обязательно имеет нулевой потенциал. Качество питающего напряжения на практике не соответствует никаким стандартам, а должно бы соответствовать ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения» (никто не виноват…)
  • Защитные автоматы (тепловые и КЗ) защищают цепь от перегрузки и пожара, а не Вас от удара током
  • Заземление вовсе не обязательно имеет низкое сопротивление (т.е. спасает от удара током).
  • Точки с нулевым потенциалом могут иметь бесконечно большое сопротивление.
  • УЗО установленное в подающем щите не защищает никого, кто получает удар током из гальванически развязанной цепи, запитанной от этого щита.

Удачи!

Что такое напряжение 220 вольт электросети?

это гогда засовываеш два пальца врозетку и тебя тресёт с частотой 220 раз в секунду (для полного кайфа есть 380)

Это наприжение которое подается по проводам по всему дому. Точнее сила тока. Вольт является стандартной единицы напряжения. Она определяется как электрическая разность потенциалов, необходимых для перехода один ампер текущего через проводник с одной Ом сопротивления. Согласно закону Ом, один ватт властью используется, который выпускается в качестве тепла и температуры проводника. Вольта изобрел гальванический свая, которая была первопроходцем в общей камере аккумулятор. До этого подразделения призвал abvolt и ohma были использованы для измерения силы. Символом является вольт V, и это всегда написано в верхнем регистре. Общее заблуждение состоит в том, что высокое напряжение смертельным исходом. Она является в настоящее время проходит через тело, что отнюдь ущерба путем поджога тканей и нарушение сигналов. Статического шока может иметь тысячи вольт, но отнюдь не ущерб, поскольку он имеет очень мало тока

Напряжение 220 V переменного тока частотой 50 герц — стандартное напряжение в однофазных сетях, на которое рассчитаны все бытовые, осветительные и другие электрические устройства! P.S. Когда АЛЕКСЕЙ засунет 2 пальца в розетку, трясти его будет с частотой 50 раз в секунду! Приятно провести время!

Напряжение изменяющееся синусоидально, т. е. В каждый момент времени в проводе присутствует напряжение относительно нул. жилы или по др. -второго провода . Разность сначала растет до Uмах потом падает до Umin. Притом Uмах и Umin равно Uдейств * 1,41. Где Uдействующее это напряжение приведенное к постоянному. Т. е. переменное напряжение 310Cosf равно по действию как постоянное напряжение 220 вольт. А зачем тебе это надо?

когда ты стукаешься локтём об угол парты

Высокое или повышенное напряжение. Как понизить напряжение в сети

Высокое и повышенное напряжение. Причины возникновения

Как в наших электросетях могут появиться высокое или повышенное напряжение? Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях. К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый рост количества потребителей. Это приводит к тому, что сотни тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.

Одной из причин повышенного напряжения, как ни странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции. В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, чтобы добиться удовлетворительных показателей тока у последних в линии передач потребителей. В итоге, у первых в линии напряжение будет повышенным. По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии. В этот сезон на дачах находится много людей, они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растёт, а в рабочие дни падает. В результате имеем картину неравномерного потребления энергии. В этом случае, если установить выходное напряжение на подстанции (а они, как правило, недостаточной мощности) нормальным (220 Вольт), то летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высокое или повышенное.

Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично без предварительного плана и проекта. Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач. Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе — повышенным.

Третья группа причин повышенного напряжения в сети — это аварии на линиях электропередач и внутренних линиях. Здесь следует выделить две основные причины — обрыв нуля и попадание тока высокого напряжения в обычные сети. Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей. В этом случае в сеть может попасть и 300, и 400 Вольт.

Теперь рассмотрим, что происходит при пропадании «нуля» во внутренние домовые сети. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например, нет контакта на нуле) происходит изменение значения напряжения на разных фазах. На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе — заниженным. Причем напряжение распределяется обратно пропорционально нагрузке. Так, если на одной фазе нагрузка именно в этот момент в 10 раз больше, чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе — 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов и, возможно, пожару.

Чем опасно высокое и повышенное напряжение

Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.

Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.

Как защититься от высокого напряжения и как понизить напряжение в сети

Чтобы защитить свои сети от повышенного напряжения, пиков высокого напряжения, скачков тока и перенапряжения необходимо использовать устройства защиты от скачков напряжения.
Подробнее смотрите в разделе «Устройства защиты от импульсных перенапряжений». Чтобы понизить напряжение, нормализовать параметры тока необходимо использовать стабилизаторы. Подробнее смотрите в разделе «Стабилизаторы напряжения».

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *