Бетон из керамзита пропорции: состав для стен и перекрытия. Как сделать керамзитобетон своими руками для отмостки? Рецепты приготовления

Содержание

состав для стен и перекрытия. Как сделать керамзитобетон своими руками для отмостки? Рецепты приготовления

Бетонные растворы востребованы во всех отраслях строительства. Керамзитобетон – отличный аналог классического бетонного раствора. Особенность материала – наличие глиняных гранул вместо мелкой щебенки.

Из чего состоит раствор?

Для приготовления качественного керамзитобетона потребуется следующее.

  • Керамзитовый компонент. Размер частиц не должен превышать 20 мм. Только так удастся добиться необходимой прочности и плотности материала.
  • Бетон.
    Подойдет материал класса В15 и выше. С его помощью получится ускорить процесс замеса, а также сделать проще укладку смеси в форму.
  • Цемент. Требуется для повышения цепкости материала и быстроты его застывания.
  • Песок. В этом случае стоит отдать предпочтение карьерному песку, который будет заполнять пустоты между частицами керамзита.
  • Вода. Она должна быть холодной и чистой. Наличие примесей в жидкости ухудшит процесс затвердевания бетона.

Если есть необходимость, в состав добавляют опилки или золу. При замешивании смеси керамзитобетона сначала в емкость добавляют компоненты без воды. В конце вливают жидкость, которая позволяет получить смесь нужной консистенции.

Чтобы получить керамзитобетон высокого качества, который будет способен справиться с поставленной задачей, необходимо предварительно рассчитать пропорцию для замеса ингредиентов.

Стоит отметить, что опытные строители уже рассчитали оптимальное количество смеси для 1 кубического метра. В сети можно встретить таблицу, посредством которой удастся получить керамзитобетон нужной марки.

Соотношение компонентов в таблице определено тем, где планируется использовать материал. Оптимальная пропорция бетона: 1: 3,5: 4,5, где 1 – это одна часть цемента, 3,5 – это три с половиной части песочного уплотнителя и 4,5 – это четыре с половиной части керамзита. Воду добавляют преимущественно в конце в пределах 1,5 части. В таблице подсчитаны пропорции для марок бетона М100, М150, М75, М50, М250.

Керамзитобетон – универсальный материал, востребованный в строительной сфере. Смесь позволяет отрегулировать плотность конечного стройматериала, что и делает керамзитобетон таким популярным. Бетон этого типа используют при следующих работах.

  • Возведение монолитных или блочных стен в строительстве. Легкий керамзитобетонный раствор позволит изготовить прочные блоки, панели и другие конструкции. В основном из такого материала сооружают бани.
  • Устройство стяжки пола. Для достижения необходимой прочности бетона используют особую пропорцию замешивания ингредиентов.
  • Изготовление плит перекрытия. Сборка конструкции осуществляется по литьевой технологии. Плюс керамзитобетонных плит заключается в теплоизоляции материала, которая позволяет поддержать в помещении нужную температуру. Также плиты из керамзитобетона отличаются небольшим весом, устойчивостью к воздействию влаги и долгим сроком службы.
  • Устройство фундаментов. Для сборки крепких оснований используют особый керамзитобетон. При замешивании раствора в него добавляют портландцемент.

В случае изготовления блоков из керамзитобетона потребуется подготовка специальных форм.

В них необходимо залить готовую смесь, а затем уплотнить состав посредством вибрационного устройства.

Как сделать для разных целей?

Керамзитобетон – востребованная смесь, которую используют не только для сборки строительных блоков. Преимущества материала.

  • Небольшой вес готовых изделий. Пористая структура керамзита делает плотность готовой конструкции меньше, за счет чего она становится легче. Для установки керамзитобетонных блоков не нужно монтировать громоздкие фундаменты, так как нагрузка от таких стен будет небольшой.
  • Отличные показатели прочности. Керамзитобетон активно используют в малоэтажном строительстве, сооружая из него стены, плиты перекрытия, полы.
  • Хорошая теплоизоляция. Этот параметр позволяет использовать керамзитобетонные конструкции при строительстве жилых домов или бань. Примечательно, что материал сохраняет тепло лучше классического бетона.
  • Надежная звукоизоляция. С помощью стен из керамзитобетона удастся защитить помещение от посторонних шумов с улицы.
  • Экологичность. Для изготовления керамзитобетонных изделий используют глину и керамзит. Компоненты смеси не выделяют в окружающую среду вредных веществ, что делает использование блоков и других конструкций безопасным для здоровья.
  • Долгий срок службы. Изделия из керамзита способны прослужить более 25 лет, не разрушаясь и не деформируясь.
  • Небольшая цена. Низкая стоимость керамзита делает материал доступным и востребованным.
  • Простота изготовления. Сделать смесь можно самому. Для этого подойдут лопаты, если нет возможности организовать замес компонентов в бетономешалке. Несложная технология изготовления керамзитобетонных блоков своими руками сделала материал популярным.
  • Удобство отделки. Плюс керамзитобетонных изделий – высокая адгезия поверхности. Это означает, что на стенах или потолке будет прекрасно держаться штукатурная смесь любого состава.

Материал с его высокими эксплуатационными характеристиками подходит для достижения разных целей. Керамзитобетон часто используют для устройства полов, возведения перекрытий как монолитных, так и блочных. Цель использования керамзитобетона определяет его состав и способ изготовления. Стоит подробно рассмотреть, как приготовить каждый вариант бетона в построечных условиях.

Для перекрытий

Заливка перекрытий требует использования особой смеси керамзитобетона. Стандартная пропорция для плит:

  • цемент – 1 часть;
  • песок – 4 части;
  • керамзит – 5 части;
  • вода – 1,5 части.

Повысить эластичность бетона можно посредством добавления пластификатора в ведро, где находится смесь. Существует несколько требований относительно применения керамзитобетона для сборки плит.

Чтобы соорудить опалубку, необходимо подготовить стальные листы. Желательно, чтобы они были профилированными. Также потребуются двутавровые балки и фанера. Для достижения необходимой прочности материала дополнительно придется закупиться арматурой. Порядок работ по возведению перекрытия подразумевает выполнение следующих этапов:

  • сначала укладывают несущие балки – они выступят в качестве основания будущего перекрытия;
  • поверх балок расстилают металлические листы, которые будут играть роль дна опалубки;
  • из фанеры сооружают боковые стены опалубки;
  • внутрь укладывают арматурную сетку – каркас плиты перекрытия;
  • в опалубку заливают подготовленный раствор.

Бетонная плита не должна взаимодействовать с влагой и загрязнениями. Для этого необходимо предусмотреть наличие гидроизоляционного слоя. Материалы для гидроизоляции можно купить в магазине. Устройство гидроизоляционного слоя поможет ускорить процесс затвердевания смеси, что позволит получить качественную монолитную структуру конструкции.

Для стен

Не секрет, что для возведения вертикальных поверхностей состав керамзитобетона потребуется изменить. У раствора должна быть более плотная консистенция. Рецепт смеси для постройки монолитных стен требует подготовки следующих ингредиентов:

  • цемента М400 – 1 часть;
  • песка – 1,5 части;
  • керамзита мелкой фракции – 1 часть;
  • воды – 1 часть.

Такая пропорция поможет добиться максимальной прочности и ускорит процесс затвердевания материала. Стоит отметить, что раствор подойдет для возведения стен малоэтажных зданий. Максимальная высота сооружения не должна превышать трех этажей.

Для пола

Заливка пола в доме требует соблюдения определенных условий. Во-первых, смесь для заливки необходимо замешивать в строгом соответствии с установленными пропорциями на 1 м3. Замес состава можно производить с помощью бетономешалки или вручную.

Пропорция бетонной смеси для пола:

  • цемент М500 – 1 часть;
  • мелкий гравий – 2 части;
  • керамзитовый песок – 3 части;
  • вода – 1 часть.

Воду добавляют в конце, когда остальные ингредиенты будут тщательно перемешаны. Стоит выделить несколько особенностей.

  • При использовании в работе металла или железных частей в процессе обустройства пола можно добавлять в смесь бетон любой марки. Необходимая прочность в любом случае будет обеспечена.
  • Для обеспечения монолитности пола необходимо добавить шар из теплоизоляционного компонента. Выбор компонента стоит осуществлять, опираясь на его характеристики.
  • Укладка деревянных досок для создания пола потребует наличия дополнительного слоя, который будет предотвращать воздействие влаги на древесину.

Учет особенностей поможет сделать покрытие прочным и долговечным. Также такая рецептура бетона подойдет для устройства отмостки. Она получается прочной и способной выдержать климатические и механические воздействия.

Рекомендации

Чтобы получить качественную керамзитобетонную смесь, стоит учесть ряд рекомендаций от специалистов.

  1. Для создания смеси следует использовать «мытый» песок. Такой материал сделает усадку бетона лучше, а также повысит прочность материала.
  2. Для надежного приготовления смеси лучше пользоваться бетономешалкой. Вручную перемешать ингредиенты состава тоже можно, но качество будет ниже.
  3. Во время работы с бетономешалкой следует соблюдать очередность подачи компонентов. Сначала в емкость нужно залить воду, потом цемент, после – песок. Последний ингредиент – керамзит. Его нужно добавлять только после того, как остальные три образуют однородную массу.
  4. Если для замеса используются лопаты, то очередность добавления ингредиентов можно не соблюдать. Однако в любом случае керамзитобетон стоит добавлять только после того, как получится качественная ЦПС.
  5. Если необходимо повысить прочность керамзитобетонной смеси, стоит добавить арматуру.

Учет перечисленных рекомендаций поможет добиться высокого качества керамзитобетона и надежности изделия или конструкции, которую из него формируют.

Керамзитобетон – востребованный в строительной сфере материал, преимуществом которого является небольшая плотность. Смесь для изготовления керамзитобетона подбирается в зависимости от строительной задачи, которая определяет правильные пропорции компонентов.

О том, как приготовить керамзитобетон, смотрите в следующем видео.

Пропорции керамзитобетона для стяжки пола на 1м3, технология замешивания

Напольная стяжка представляет собой черновую поверхность, которая позволяет скрыть выступающие элементы конструкций, неровность пола, а также различные коммуникационные сети.

Оглавление:

  1. Преимущества и недостатки
  2. Состав и соотношение компонентов
  3. Технология самостоятельного замешивания

Преимущества стяжки

При перепадах температур обеспечивает отличную морозостойкость до 50 циклов без потери несущей способности и образования трещин. Стоит отметить отличную устойчивость к воздействию грибковых микроорганизмов, гнили, плесени, а также химических реагентов. При прямом контакте с огнем не поддерживает горение и не воспламеняется. Такой пол можно изготавливать абсолютно под любой чистовой материал.

Есть и недостатки:

1. Возникает необходимость шлифования поверхности или нанесения отделочного слоя, так как после заливки раствора гранулы керамзита всплывают, создавая своеобразную шероховатость.

2. Требуется значительная толщина (более 6-7 мм), что сказывается на объеме помещения. Поэтому для домов с низким потолком предпочтительнее будет ЦПС толщиной 2-3 мм.

3. Требует существенных трудозатрат для устройства большого слоя.

Пропорции для изготовления

Чтобы выяснить масштабы работ, необходимо знать не только площадь комнаты, но и толщину заливаемого слоя. Полученный объем покажет, сколько глиняного компонента потребуется, от чего и следует отталкиваться дальше. Для получения различной плотности материала 1000-1700 кг/м3 (для напольного покрытия рекомендуется выбирать наиболее высокий показатель для обеспечения хороших эксплуатационных качеств) используются компоненты в определенном соотношении.

Плотность, кг/м3 Масса на 1 м3 раствора, кг
Песок Цемент М400 Керамзит М700
1500 430 440 560
1600 640 405 505
1700 820 390 440

Чтобы хорошо увлажнить керамзит при вышеуказанных пропорциях для стяжки, добавляют 150-200 л чистой воды на 1 м3. Если этого объема не хватило и раствор недостаточно влажный, то количество можно увеличить до 250-300 л. Строители предпочитают ориентироваться на упрощенное соотношение материалов для М100. Такой вариант не менее эффективен:

  • 1 часть цемента;
  • 3 ч песка;
  • 4 ч гранул средней фракции;
  • 1 ч воды.

Такие пропорции напоминают пескоцемент, поэтому для простоты можно купить сухую смесь и добавить недостающие компоненты. Если требуется очень прочная и долговечная стяжка, то соотношение несколько меняется.

Марка керамзитобетона Песок Цемент Керамзит
М150 3,5 1 5,6
М200 2,5 4,8
М300 1,8 3,6
М400 1,2 2,7

Работая с портландцементом марки М500, при укладке стяжки в помещениях с невысокими эксплуатационными нагрузками рекомендуется придерживаться следующих пропорций:

  • Цемент – 295 кг.
  • Песок крупной фракции – 1180 кг.
  • Гранулы – 1300 кг.
  • Вода – 205 л.

Облегченные стяжки из керамзита плотностью до 300 кг/м3 делаются без добавления песка. В этом случае достаточно использовать цемент (260-370 кг), заполнитель (710-1100 кг) и воду (100-230 кг).

Рекомендации по изготовлению

Первым делом следует подобрать подходящий крупный наполнитель. Керамзит является легкоплавкой глиной, которая обрабатывается термическим методом. Существует несколько разновидностей:

  • гравий – частицы имеют исключительно круглую или овальную форму;
  • щебень – крупнофракционные зерна с нечеткими краями;
  • песок – вторичный материал мелкой фракции, полученный в процессе переработки керамзита.

При изготовлении стяжки используется гравий не более 20 мм. Крупнофракционный щебень до 40 мм более практичен для полусухого или сухого типа. Песок применяется для устройства слоя до 3 мм, так как обеспечивает высокую прочность и теплоемкость за счет достаточной плотности раствора. Перед внесением гранул они замачиваются водой, чтобы исключить всплывание частиц. Гидрофильные свойства позволяют быстро впитать влагу, в результате чего засыпка будет иметь увеличенную массу.

Сначала в поученный заполнитель вносится песок и цемент с регулярным перемешиванием до тех пор, пока керамзит не приобретет цементный однородный оттенок. Наиболее эффективно для таких целей использовать бетономешалку, так как вручную этот процесс достаточно трудоемкий. Но если приходится мешать лопатой, то замес рекомендуется делать в полном объеме.

Чистая вода вносится в раствор в количестве до 300 л на 1 м3, хотя оно варьируется из-за разной влажности компонентов. Основной целью является достижение подходящей консистенции, чтобы смесь легко разглаживалась строительным правилом и не была слишком густой. Однако высокая влажность заставит гранулы всплыть, что существенно скажется на гладкости полученной стяжки.


 

Керамзитобетон М200, для чего используется, состав керамзитобетона, характеристики, объемный вес марки 200, пропорции

Керамзитобетон М200 — надежный строительный материал с хорошими теплоизоляционными свойствами. Он относится к классу легких бетонов, а в качестве крупного наполнителя в его состав входит керамзит (обожженная вспученная глина.

Состав керамзитобетона М200

  • Цемент марки М400-М500, который является вяжущим веществом в смеси. Главное требование к этому компоненту – свежесть.
  • Крупный наполнитель – керамзит крупных и мелких фракций. Предварительно ингредиент очищают от мусора и примесей.
  • Очищенная вода.
  • Мелкий заполнитель – кварцевый или речной песок, обязательно промытый и просеянный для удаления посторонних включений.

Керамзитобетон М200 пропорции

Соотношение компонентов будет меняться в зависимости от назначения смеси.

Для изготовления керамзитобетонных блоков берут пескобетонную смесь (1ч. цемента и 3 части песка) и перемешивают с 1ч. воды, далее засыпают 6ч. керамзита смешивают до однородного состояния.

Для стяжки пола используют несколько другие пропорции: смесь цемента и песка(1/3), 2 ч. керамзита и 1ч. воды.

При изготовлении смеси для перекрытий берут 6ч. керамзита, 5ч. песка и цемент с водой в пропорции 1/1,5. Так же для улучшения качеств материала к раствору добавляют пластификаторы.

Для чего используют керамзитобетон марки М200

  • Возведение стен, как внутренних, так и наружных.
  • Заливка фундаментов.
  • Устройство стяжек пола.
  • Создание малоэтажных строений с малой нагрузкой.
  • Изготовление плит перекрытий.
  • Утепляющие слои в жилых помещениях.
  • Различные ограждающие конструкции и заборы.

Керамзитобетон М200 характеристики

  • Класс прочности этой марки – В15.
  • Морозостойкость, т.е. количество заморозок-разморозок – F100.
  • Средняя плотность – D1600
  • Водонепроницаемость – W4
  • Фракция крупного наполнителя до 20мм.

Керамзитобетон должен изготовляться с соблюдением технологий и в соответствии с ГОСТ, только в этом случае он будет отвечать всем заявленным техническим характеристикам.

Объемный вес керамзитобетона марки М200

Керамзитобетон марки М200 – это тип конструкционного бетона. Он является самым прочным видом легких бетонных смесей. Его объемный вес достигает 1700 кг/м3.

Благодаря достаточно хорошей прочности, такая марка активно используется в ситуации, когда нужно облегчить вес и нагрузку несущих сооружений. Также, небольшой вес материала существенно облегчает работу с ним.

Компания «НИКС-К» существует на рынке с 2002 года. Мы производим и реализуем различные виды бетонных смесей для строительных работ. Заказать продукцию у нас просто. Вы можете позвонить по телефону, посетить завод или написать на электронную почту. Так же вы получите грамотную консультацию и помощь специалистов.

Преимущества компании «НИКС-К»

  • Доставка по Москве и области собственной специализированной техникой.
  • Проверка качества каждой партии в лаборатории и выдача сертификатов соответствия.
  • Погрузка товара при мощи специализированного весового комплекса.
  • Скидки от объема закупаемой продукции.
  • Бесперебойная работа завода в условиях отсутствия электроэнергии.

правильные пропорции при изготовлении — Всё про бетон

В последнее время на рынке строительных материалов появилось довольно много новых материалов. Одним из таких новинок стал  керамзитобетон, который довольно быстро стал популярным в северных странах, которые отличаются достаточно суровым климатом. В качестве основы для данного материала используется керамзит, который, в свою очередь,  изготавливается из такого природного материала, как глина.

Глина является одним из самых древних материалов, которые не только является чистым с экологической точки зрения, но и отличается долговечностью и устойчивостью к воздействию самых различных негативных факторов окружающей среды. Технология производства керамзита предполагает вспенивание глины, в результате чего материал приобретает легкость, высокие звукоизоляционные свойства и низкий коэффициент теплопроводности.

Керамзитобетон представляет собой сочетание керамзита и бетона, которые обладает положительными качествами обоих материалов.

Во вспененную глину при производстве добавляются гранулы бетона, благодаря чему получается легкий и прочный материал. Керамзитобетон имеет такие же характеристики, как и бетон, однако при этом они обладает более лучшими, чем бетон, химическими характеристиками и более низкими  показателями теплопроводности.

Особенности применения керамзитобетона

На сегодняшний день керамзитобетон активно используется при возведении высотных зданий и в малоэтажном строительстве. Однако при выборе данного материала для возведения здания или сооружения необходимо учитывать, что он имеет некоторые ограничения применения.

Для того, чтобы лучше понять где его можно использовать, где лучше поискать альтернативу, а где наилучшим вариантом является именно он, необходимо учесть следующие особенности: 

  • Относительная легкость материала. Данный показатель не только позволяет использовать данный материал в тех случаях, когда высокие нагрузки на грунт ил и основание здания или сооружения недопустимы. Также легкость материала в значительной степени облегчает сам процесс строительства. Помимо этого низкая нагрузка, оказываемая конструкциями из данного материала, позволяет использовать более простую, а значит более дешевый и менее трудоемкий при возведении фундамент;
  • Небольшой показательно коэффициента теплопроводности. Благодаря данной характеристики керамзитобетон и приобрел довольно широкое распространение в странах, где преобладает холодный климат. Малый коэффициент теплопроводности также придает материалу устойчивости к температурным перепадам, благодаря чему его поверхность не покрывается трещинами, которые могут стать первопричиной разрушения конструкций, а также позволяет избежать утечек тепла из помещений, а значит сократить расходы на отопление. Из керамзитобетона возводятся наружные стены, перекрытия и черновые полы. Поверхности, созданные из данного строительного материала превосходно сочетаются с любыми утеплителями, а также отделочными материалами;
  • Высокий показательно водопоглощения. В отличие от приведенных выше характеристик эту можно отнести к недостаткам керамзитобетона.

    При попадании влаги на поверхность из данного материала, она довольно легко попадает во внутрь. Влага способствует разрушению конструкции, поскольку имеет свойство расширяться при охлаждении, создавая трещины, в которые опять же попадает вода. Так что использование данного материала ограничено в той местности, где выпадение осадков является частым явлением.

     Помимо этого из-за высокого показателя водопоглощения поверхность данного материала должна иметь гидроизоляционную защиту. Данная защита создается, к примеру, путем нанесения на поверхность специальных отделочных материалов.

Состав керамзитобетона

Основным отличием керамзитобетона от бетона является не только в заполнителе, но в том, что вместо гравия или щебня при возведении конструкции используется керамзит. В остальном данный материал не имеет отличий от бетона. Пропорции также не имеют существенных отличий.

В состав керамзитобетона входят такие компоненты:

  • Вода;
  • Песок определенного вида и дисперсности;
  • Керамзит, который как уже было сказано выше, представляет собой вспененную глину;
  • Цемент.

Помимо этого при производстве керамзитобетона могут добавляться специальные добавки, которые придают материалу определенные свойства и улучшают его положительные характеристики. В большинстве случаев в качестве добавок выступают пластификаторы, которые придают керамзитобетону большую пластичность, а значит облегчают процесс строительства и расширяют возможности использования материала.

Пропорции компонентов керамзитобетона

От пропорций, в которых смешиваются материалы, и зависит марка керамзитобетона, а также его прочностные характеристики.

Плотность керамзитобетона зависит во многом зависит от фракции керамзита. При большой фракции плотность керамзитобетона относительно низкая. Такой материал чаще всего используется в качестве теплоизолятора. При мелкой фракции керамзита материал  приобретает высокую плотность, а значит и его прочность.

Такой керамзитобетон используется для возведения несущих конструкции. Из такого материала изготавливаются керамзитобетонные блоки марок М50. М75, М100, которые используются для строительства перегородок, несущих стен или фасадов.

Таким образом, плотность, прочность и теплопроводящие свойства взаимосвязаны, чем меньше показатель плотности, тем лучше конструкция удерживает тепло, однако конструкция не отличается высокой прочностью, а значит не способна выдержать высокую нагрузку.

Однако плотный керамзитобетон, выдерживающий большую нагрузку, нуждается в создании теплоизоляции. Для того, чтобы соблюсти баланс плотности, прочности и теплопроводности, стараются найти золотую середину.

Помимо этого фракция керамзита влияет на его количество в составе материала. Чем меньше фракция, тем больше его добавляют при создании смеси. Керамзит напрямую влияет на плотность материала, увеличивая ее.

В качестве пластификатора может использоваться жидкое мыло, которое растворяют в воде в определенных пропорциях. Количество воды должно быть таким, чтобы смесь получилась одновременно и вязкой и текучей. Таким образом она может использоваться для создания конструкций, приобретая определенную форму и не растекаясь при этом.

Если керамзитобетон используется при строительстве частного дома, то его вполне можно приготовить самостоятельно.

Состав приготовляемой смеси должен входить керамзит, предварительно просеянный кварцевый песок, цемент и вода. Также можно добавить древесную смолу. Пропорции могут быть самыми различными, все зависит от того, какое предназначение будет выполнять возводимая из керамзитобетона конструкция. Пропорция оказывается влияние на плотность и прочностные характеристики.

В большинстве случаев обычный керамзит, который имеет плотность тысяча килограмм на кубический метр,  содержит в своем составе:

  • Около 100-150 литров воды. Вода должна быть чистой и не содержать грязи и каких-либо включений, которые могут негативно сказаться на качестве будущей конструкции;
  • Цемент в количестве 250 килограмм;
  • Керамзит 720 килограмм.

Состав данной смеси имеет много общего с легким бетоном, в который добавлен такой ингредиент, как керамзит, представляющий собой вспененную глину.

В качестве связующего для всех ингредиентов  используется качественный цемент марки М400.

При  высоком качестве цемента не требуется добавлять пластификаторы, поскольку в этом случае смесь обладает достаточно высокой пластичностью. Однако данный цемент довольно дорогостоящий.

Можно использовать при замешивании смеси пуццелановый и шлакоцемент. Однако слишком увлекаться экспериментами не стоит, поскольку уверенности в отличных свойствам керамзитобетона в этом случае нет.

Такой материал может быть непрочным, не обеспечивать должной теплоизоляции и быть очень гидроскопичным. Так что лучше всего придерживаться проверенных составов.

Цемент не только выступает в смеси в качестве связки всех остальных ингредиентов, но и может оказать существенное влияние на свойства материала.

Увеличение доли цемента в смеси приводит к тому, что материал приобретает большую плотность и прочность, однако одновременно с этим увеличивается и вес. Таким образом, если добавить слишком много цемента, то конструкция получится тяжелой и будет оказывать существенную нагрузку на основание.

При  приготовлении смеси керамзитобетона в качестве наполнителя используется керамзит, при приготовлении бетона используются гравий и щебень. Помимо этого в качестве наполнителя может использоваться кварцевый песок, который необходимо предварительно просеять для того, чтобы очисть его от посторонних включений.

Стоит отметить, что песок также имеет разную дисперсность. Использование той или иной разновидности песка оказывает влияние на марку керамзитобетона и его  свойства а именно на плотность, прочность и теплопроводность.

Вода, которая используется, при  замешивании смеси, должна быть чистой. Она не должна содержать грязи, масляных включений и т.д. Наличие подобных примесей оказывает негативное влияние на устойчивость будущей конструкции к самым различным негативным воздействиям окружающей среды.

Приготовление смеси осуществляется в бетономешалке, которая путем вращения придает смеси однородность.

Керамзитобетон: пропорции для приготовления

Керамзитовый гравий получил широкое распространение в строительстве благодаря надежности сформированных из него конструкций. Строительные формы и конструкции способны простоять десятки лет без потери физических и эстетических характеристик. Композиция цементного раствора и керамзита относится к легкой группе бетонов. Состав керамзитобетона содержит крупный заполнитель керамзит, мелкий заполнитель песок и цемент в качестве вяжущего компонента. Кроме цемента, для связки могут использовать строительный гипс. Рассмотрим подробно, что собой представляет керамзитобетон, пропорции для смесей различной плотности, область применения и характеристики строительного материала.

Свойства и характеристики материала

Визуально керамзитобетон имеет пористую структуру, размер пор зависит от режима обжига основного заполнителя. Различают три степени пористости бетона: крупнопористый, поризованный и плотный. На эксплуатационные характеристики конструкций и построек оказывает значительное влияние однородность структуры бетона.

Нормативная прочность керамзитобетона определяется пропорцией керамзитового гравия мелкой и крупной фракций. Применение керамзитобетона как основного элемента строительных форм требует дополнительного армирования, с целью повышения прочности конструкций установку бетонных элементов сопровождают крепежом арматуры. Основная роль керамзитобетона – формирование ограждающего теплоизоляционного слоя в многослойных конструкциях.

Прочность и физические характеристики керамзитобетона зависят от соотношения компонентов. Следует учитывать, что пропорции керамзитобетона для пола и пропорции смеси для изготовления строительных блоков различны.

Керамзитобетон: пропорции и состав раствора

В качестве перекрытий при возведении зданий долгое время использовали железобетонные плиты, сегодня эта технология не актуальна. Железобетонные перекрытия обладают существенным недостатком – низкой теплоизоляцией. Материалом, способным успешно выдерживать нагрузки и при этом обеспечивать комфортные условия пребывания в помещении, является керамзитобетон, который применяется в виде стяжки.

Выполняя укладку стяжки, нужно обращать внимание на тип поверхности, от которого зависит ее состав. Оптимальные пропорции керамзитобетона для стяжки: высота 30 мм на 1м2 требует 40 кг смеси пескобетона М300 и 35 кг керамзитового гравия.

Керамзитобетон: пропорции для стяжки в зависимости от расчетного значения плотности на 1м3

Значение плотностиКерамзит, плотность насыпнаяЦементПесокВода
кг/м3кгм3кгкгл
1000700720250140
15007000,8430420
16007000,72400640
16006000,68430680
17007000,62380830
17006000,56410880

Для приготовления бетонной смеси в подходящую емкость загружают керамзит, после чего заливают водой (небольшое количество). После растворения пористой структуры гранул в емкость загружаются связующие компоненты — цемент и пескобетон. Все перемешивается строительным миксером до густой консистенции. Смешивание раствора прекращается после того, как керамзит приобретает цвет цемента.

Достоинства и недостатки стяжки из керамзитобетона

Зачастую керамзитобетонная стяжка применяется при необходимости повышения уровня пола в помещении. Сформированная поверхность обладает высокой прочностью, устойчива к воздействию влаги, не пропускает воздух. Преимущества стяжки из керамзитобетона:

  • затраты на нее зависят от площади и толщины покрытия;
  • доступная технология монтажа и продолжительный срок эксплуатации;
  • возможность корректирования плоскости, устранение перепадов и неровностей;
  • абсолютная совместимость со всеми видами напольных покрытий;
  • высокая степень влагостойкости и огнестойкости, звукоизоляция;
  • стойкость к биологическому и химическому воздействию;
  • в таком процессе, как приготовление керамзитобетона, пропорции регулируют плотность;
  • экологическая чистота.

Стяжка из керамзитобетона обладает недостатками:

  • укладка сопровождается значительным подъемом уровня пола;
  • после высыхания требуется шлифовка поверхности.

Доступность технологии производства блоков

При возведении небольшой жилой или хозяйственной постройки на даче или приусадебном участке хозяева часто отдают предпочтение строительным блокам из керамзитобетона. Они также используются для строительства домов, возводимых в областях с низкими несущими способностями грунта. Причина выбора заключается в высоких эксплуатационных качествах материала и доступной технологии производства блоков. Их можно изготавливать самостоятельно на приусадебном участке без применения технологического оборудования.

Формирование блоков из керамзитобетона

Керамзитобетонные блоки бывают двух видов: пустотелые и полнотелые. Вне зависимости от формы блоков основой является керамзитовый гравий. Блоки, форма которых не имеет пустот, применяются для укладки фундаментов и облицовки наружных стен. Пустотелые блоки широко используются как звукоизоляционный и теплоизоляционный ограждающий слой внутренних стен здания.

За счет применения пористых блоков повышаются несущие характеристики фундамента и стен здания. Однако главное преимущество использования керамзитобетона в строительстве определяется экономичностью возводимых конструкций. За счет пористости структуры достигается снижение расходов сырья и малый вес конструкционных элементов.

Керамзитобетон: состав и пропорции смеси для формовки блоков

Керамзитобетонные блоки в своем составе содержат керамзит, цемент, песок мелкой фракции и иные добавки. Иными словами, смесь содержит связующие компоненты и керамзит. В качестве добавок, повышающих физические свойства строительных блоков, можно использовать смолу древесную омыленную (СДО) для повышения устойчивости к низким температурам. Чтобы повысить степень связывания, добавляют порошок технического лингносульфоната (ЛСТП).

Подготовка раствора

Связующей основой смеси для формирования фактурного слоя является шлакоцемент (ШПЦ) или цемент марки М400 (портландцемент). Следует учитывать, что марка цемента не может быть меньше М400. Далее добавляется керамзит и песок мелкой фракции.

Изготавливаем керамзитобетон своими руками, пропорции смеси: 1 (цемент), 8 (керамзитовый гравий) и 3 (песок). Этот состав даст оптимальные характеристики будущего строительного материала. Чтобы изготовить керамзитобетон, пропорции на 1м3 должны быть такими: 230-250 литров воды. Для придания пластичности бетону можно воспользоваться народным методом: в процессе смешивания компонентов добавить чайную ложку стирального порошка.

Смешивание всех компонентов должно выполняться в бетономешалке, последовательность действий следующая: в барабан загружаются и смешиваются сыпучие компоненты, далее постепенно добавляется вода до получения однородной массы, напоминающей по консистенции пластилин.

Формовка блоков и завершающий этап

На месте для формовки блоков устанавливают поддон, на котором размещают опалубку. В процессе высыхания блоков недопустимо прямое попадание на них влаги и прямых солнечных лучей, с этой целью устанавливается навес. Перед закладкой раствора внутренние стенки форм обильно обмазываются машинным маслом, а основа посыпается песком. Существуют стандартные размеры блоков, изготовленных из керамзитобетона: 190×190×140, а также 390×190×140 мм. Стандартных габаритов следует придерживаться, но для небольшого дачного строительства размеры можно менять на свое усмотрение.

После завершения всех подготовительных этапов формы наполняются раствором. Смесь утрамбовывается для устранения пустот до появления цементного молока. Поверхности блоков выравниваются мастерком. Формы разбираются по истечении суток с момента закладки раствора, сами блоки при этом не сдвигаются до полного затвердевания.

Период высыхания длится до 25-28 суток в зависимости от климатических факторов. Процесс высыхания не должен стимулироваться искусственно и проходить в короткий срок, быстрая потеря влаги может стать причиной растрескивания и утраты прочности блоков.

Произведенные в домашних условиях блоки из керамзитобетона, при условии соблюдения всех указанных правил, не уступают блокам, произведенным в условиях промышленного технологического участка.

Изготовление и сфера применения керамзитобетона

Керамзитобетон – материал давно известный, но не потерявший популярности у застройщиков. Это как раз тот случай, когда «старый друг лучше новых двух». Современные строительные материалы тоже обладают положительными качествами керамзитобетона, но, как правило, лишь каким-то одним из них – низкой теплопроводностью, легкостью или дешевизной. А керамзитобетону в среднем свойственны практически все эти плюсы.

Дом из керамзитобетона будет теплее, легче и обойдется дешевле

Соблюдаем пропорции

Как у любого вида бетонной смеси, у керамзитобетона есть свои пропорции, которые необходимо соблюдать, если мы хотим получить материал определенного качества. Как правило, бетон, песок и керамзит используются в соотношении 1:2:3. В этом случае готовые элементы имеют необходимую прочность и в то же время достаточно легки, чтобы составить конкуренцию даже газобетону.

Как правило, для бетонной смеси используют керамзит с размером гранул от 5 мм. Размер фракции зависит от типа готовых изделий. Если они полнотелые, зерна керамзита не должны быть больше 10 мм, для пустотелых – 20 мм. Также, изготавливая керамзитобетон, можно заменить кварцевый песок керамзитовым с размером гранул меньше 5 мм. Это увеличит теплосберегающие свойства материала, но снизит его прочность.

Технология изготовления

Керамзитобетон хорош тем, что его можно изготовить самостоятельно без сложных технических устройств. Для более качественного процесса лучше использовать бетономешалку. Сначала необходимо хорошо перемешать 1 часть сухого бетона и 2 части сухого песка, затем вымешать все это с 1 частью воды и только потом добавить 3 части керамзита. Поскольку керамзит – очень влагоемкая субстанция, он может впитать практически всю воду из смеси – в этом случае жидкость нужно добавить.

Смесь готова, если все гранулы керамзита покрылись раствором

Консистенция раствора зависит от сферы его использования. Если из него планируется изготавливать кирпичи для строительства, влаги нужно столько, чтоб все гранулы равномерно покрылись глазурью из бетона. Для заливки пола смесь может быть более жидкой – как сметана.

Изготовленные изделия нужно защищать от попадания прямых солнечных лучей. В течение месяца необходимо поддерживать влажный микроклимат для того, чтобы керамзитобетон набрал необходимую прочность. При слишком быстром высыхании на хорошее качество можно не рассчитывать.

Если керамзитобетон нужен вам для не особо ответственных построек, можете попытаться сделать его самостоятельно. При возведении серьезных сооружений, тем более при жилом строительстве, лучше не рисковать и использовать материал, изготовленный на производстве с жестким соблюдением технологий и гарантированным качеством. При кустарном способе очень легко ошибиться с пропорциями и провести процесс с нарушениями, а если речь идет о жилом доме, такие ошибки недопустимы.

Виды керамзитобетона и его назначение

В зависимости от плотности керамзитобетон может иметь разное предназначение:

  1. Для изготовления перегородок. Плотность D700–D1400, может изготавливаться совсем без песка или с низким его содержанием.
  2. В качестве теплоизоляционного слоя. Плотность D700, песок при изготовлении керамзитобетона этой группы также не обязателен.
  3. Для изготовления стен. Плотность D1400–D2000, используется большее количество цемента и песка, поскольку требования к несущей способности повышены.
  4. Для облицовки. Внешняя сторона блоков из керамзитобетона может иметь вид натурального камня, он хорошо подходит для облицовки фасада.

Из керамзитобетона изготавливают монолитные конструкции и пустотелые блоки. Пустотность придает строительным элементам большую легкость и уменьшает их теплопроводность, которая и так достаточно низка. Но элементы, которые должны работать под нагрузкой, лучше делать полнотелыми.

Количество пустот в керамзитовом блоке зависит от предназначения изделия

Одно из популярных направлений использования керамзитобетона – устройство стяжки на полу. У нее достаточно много достоинств: хорошие звуко- и теплоизоляция, простой монтаж, сравнительно низкие затраты, экологичность и т. д.

Плюсы и минусы керамзитобетона

У керамзитобетона достаточное количество неоспоримых положительных качеств, которые часто заставляют застройщиков сделать выбор именно в его пользу. В их числе:

  • Дешевизна. Конструкции из керамзитобетона, как правило, стоят меньше, чем такие же из кирпича. К тому же кирпич уступает керамзитобетону по теплопроводности и стены из него должны быть толще, а это повышает расход строительного материала.
  • Небольшой вес. По сравнению с большинством других видов бетона, изделия из керамзитобетона весят немного, что значительно облегчает процесс монтажа. Конечно, они уступают в легкости газо- и пенобетону, но намного прочнее, что часто имеет решающее значение.

Кирпич из керамзитобетона больше по размеру, чем обычный. Поэтому строительство идет гораздо быстрее

  • Низкая теплопроводность. Керамзитобетон считается теплым материалом. За счет пористой структуры он хорошо держит тепло, конструкции из него получаются легче, чем из обычного бетона, и стоят дешевле.
  • Экологичность. Керамзит производится из обожженной глины, это полностью природный материал, что делает сооружения из него экологически чистыми. Такого не скажешь о других видах бетонных изделий со сходными качествами, например, шлакоблоках, где в качестве наполнителя используется вредный для здоровья шлак.

В использовании керамзитобетона есть определенные отрицательные моменты, которые необходимо учитывать.

  • Несмотря на теплосберегающие свойства материала, их недостаточно для обеспечения нормального микроклимата внутри помещений, поэтому конструкциям из керамзитобетона все-таки необходима теплоизоляция.
  • Керамзитобетон достаточно быстро напитывается влагой, поэтому его нужно использовать в сухой среде или с применением гидроизоляции.
  • Прочность этого материала находится в диапазоне средних величин, серьезные несущие конструкции из него не построишь.
  • Изделиям из керамзитобетона сложно придать идеальную форму. Это становится причиной особых требований к процессу обработки.
  • Простота изготовления является одновременно плюсом и минусом керамзитобетона, поскольку легко попасть на некачественный материал, изготовленный с нарушением технологии, что неминуемо повлияет на качество конечных изделий.

Главный принцип использования этого материала заключается в том, что он должен применяться правильно, с учетом своих особенностей. Тогда он станет идеальным вариантом и будет служить долго.

делаем керамзитобетон своими руками пропорции

Бетонные растворы широко применяются практически во всех отраслях строительства. Состав керамзитобетона делает его простым в изготовлении и сравнительно низким по стоимости. Используют материал в строительстве стен для домов или напольных покрытий. Соблюдение пропорций на 1 м3 и использование качественных исходных компонентов делает финальную конструкцию надежной и долговечной.

Подготовка оборудования

Для производства материала мастер понадобится бетономешалка и вибростанок.

Ручные вибростанки

Малогабаритное устройство оптимально подходит для реализации работ в непрофессиональных условиях.

Основные характеристики:

  • вибратор фиксируется на корпусе и производит умеренные колебания, что обеспечивает равномерное распределение рабочей массы по форме;
  • изделие оснащено стационарными и съемными пустотообразователями. В первом случае можно выпускать полнотелые и пустотелые модули;
  • в зависимости от производителя и дополнительных опций стоимость вибратора доходит до 10 т.р.

Использование специального оборудования обеспечит высокое качество готового блока, но может оказаться затратным для частной стройки

Механизированные передвижные станки

Основные характеристики:

  • оборудование укомплектовано несущим корпусом и рычажным приводом для автоматического снятия формы с корпуса;
  • станок оснащен колесиками, которые позволяют организовать легкое перемещение по площадке;
  • в зависимости от потребностей, можно выбрать модель с различными надстройками, например, — прессом для утрамбовывания;
  • вибратор фиксируется на аппарате и посылает импульс к форме;
  • устройство может быть оснащено 4 матрицами, что ускоряет производственный процесс;
  • стоимость достигает 16 т. р

Вибростол

Основные характеристики:

  • основа устройства оснащена встроенным вибратором, тут размещается металлический поддон, толщиной до 3 мм;
  • на поддон выставляются формы, которые утрамбовываются вибрациями;
  • затем поддон относят в вентилируемое сухое место, где происходит окончательное высыхание материала;
  • все манипуляции реализуются вручную;
  • за раз можно приготовить до 6 форм, которые на поддоне удобно транспортируются к месту сушки;
  • нижнее размещение вибраторов позволяет получить полное и оптимальное распределение вибраций по всему столу;
  • стоимость оборудования колеблется около 20 т.р.;
  • вибростол не мобилен, крупногабаритен и требует много ручного труда.

Вибропресс

Оборудование этого класса применяется на крупных заводах и предприятиях. На всех стадиях изготовления блоков практически исключен ручной труд. Устройство отличается высокой производительностью и позволяет получить отменное качество модулей.

Для замешивания смеси используется бетономешалка, объемом не менее 130 л

Описание материала

Керамзитобетон представляет собой прочный монолитный строительный материал, отличающийся от классического бетона введением в состав смеси керамзита. В традиционном бетоне роль наполнителя играет щебень. Основное назначение керамзита, которым в керамзитобетоне заменен щебень, состоит в снижении массы готовой смеси.
Сырьем для производства керамзита служит глина или глинистый сланец. Исходный материал подвергается обжигу. Различные технологические режимы позволяют получать конечный продукт с заданной плотностью, которая варьируется от 150 до 800 килограммов на кубический метр. Относительная простота технологии производства позволяет поддерживать привлекательный для потребителей уровень цен. Материал отличается хорошими теплоизолирующими свойствами, долговечен, морозоустойчив. Отдельно стоит отметить натуральность и экологичность.

Обычно в состав керамзитобетона входят следующие компоненты:

  • одна часть цемента;
  • две части песка;
  • три части керамзита.

Пропорции могут варьироваться в зависимости от назначения смеси и требуемых параметров прочности.

Иногда керамзитобетон ошибочно называют керамобетоном. Это грубейшая ошибка, поскольку керамобетон готовится не на цементной основе. Этот материал разработан в качестве эффективного огнеупора. Такие свойства обусловлены использованием высококонцентрированных керамических вяжущих суспензий и кремнеземного заполнителя. Вяжущим компонентом классического бетона и керамзитобетона является цемент.

Подготовка форм

Формы можно изготовить самостоятельно, используя простую деревянную доску, 20 мм. Конструкция формируется на основе поддона и двух элементов г-образной формы, которые при сборке образуют борты или 4 стандартных бортов.

Изделие может быть предназначено для изготовления пустотелых или полнотелых модулей:

  • формы без пустот;
  • формы со сквозными пустотами;
  • формы с несквозными пустотами.

Параметры изделия должны обеспечивать изготовление требуемых габаритов керамзитобетонного блока. Внутри форма обшивается металлом. Альтернативным вариантом может послужить изготовление форм целиком из металла. Это обеспечит легкое отхождение готового блока.

Основной состав

Компоненты, входящие в керамзитобетон, регулируются ГОСТом 25820—2000. Точное описание ингредиентов и требования к их качеству обеспечивают надежность и долговечность стройматериала. В состав керамзита входят:

  • Керамзитовый компонент с частицами не более 20 мм. Он обеспечит необходимую прочность и плотность.
  • Бетон класса В15 или выше. Позволяет ускорить процесс замеса и укладки благодаря удобоукладываемости.
  • Цемент. Необходим для цепкости и быстроты застывания.
  • Песок карьерного происхождения. Нужен для заполнения воздушных пустот между керамзитом.
  • Чистая жидкость. Добавляется для придания однородной консистенции и перемешивания составных.

Посмотреть «ГОСТ 25820-2000» или

Керамзитобетон – состав

Ниже приведено несколько рецептур, которые могут использоваться для приготовления рабочей смеси.

Рекомендованный состав 1 м³ бетона для изготовления стеновых камней:

  • портландцемент М400 – 230 кг;
  • гравий керамзитовый, фракцией 5.0-10.0 мм, плотностью 700-800 мг/м³ – 600-760 кг;
  • песок кварцевый, 2.0-2.5 мм – 600 кг;
  • вода – 190 кг.

Если воспользоваться указанной рецептурой, можно получить бетон марки М150, с объемной массой сухого бетона 1430-1590 кг/м³.

Для повышения устойчивости керамзитобетона к действию воды, некоторых агрессивных сред и замораживанию, можно воспользоваться указанной рецептурой на 1 м3:

  • цемент – 250 кг;
  • смесь керамзитовая – 460 кг;
  • песок керамзитовый – 277 кг;
  • В/Ц – соотношение цемента и воды – принимается, как 0.9;
  • Эмульсия битумная – 10% от объема воды затворения.

Перед работой дно формы посыпается песком, борта обрабатываются машинным маслом

Как приготовить керамзитобетон своими руками из расчета на 100 кг рабочей смеси:

  • керамзит – 54. 5 кг;
  • песок – 27.2 кг;
  • цемент – 9.21;
  • вода – 9.09 кг.

Из указанного количества компонентов можно изготовить 9-10 пустотелых модулей.

Как сделать керамзитобетон без дозатора? Если принять за объемную единицу ведро, допустимо использовать указанные пропорции:

  • цемент М400 – 1 ед.;
  • песок очищенный, 5 мм – 2 ед.;
  • керамзит, плотностью 350-500 кг/м³ – 8 ед.;
  • вода – 1.5 ед. – окончательное содержание жидкости определяется на месте, в зависимости от консистенции получившегося раствора.

Из чего состоит керамзитобетон

Любой специалист скажет, что в состав керамзитобетона неизменно входит:

  • цемент;
  • песок;
  • мелкодисперсный керамзит, изготовленный из натурального сырья;
  • вода без технических примесей.

Важно! Сточная вода с показателем pH меньше 4 категорически не подходит для этих целей. То же самое касается и морской воды, из-за которой на готовой поверхности появляется белый налет.

Помимо этого строительная смесь может дополнительно включать в себя опилки, золу и пластификаторы.

Более точный подбор нужного состава керамзитобетона осуществляется непосредственно на строительной площадке. И тут есть несколько рекомендаций, которые помогут вам получить наиболее эффективную смесь:

  1. Для повышения эластичности используйте песок из кварца.
  2. Чтобы готовая конструкция отличалась устойчивостью к влаге, в раствор рекомендуется добавлять керамзитовый гравий (без песка).
  3. Портландцемент с маркировкой от М400 является хорошим вяжущим веществом, без пластифицирующих компонентов.
  4. Цемент повышает прочность готового блока, однако, стоит учитывать, что в этом случае объем массы строительной смеси будет больше.
  5. Если готовые блоки будут в дальнейшем подвергаться температурной обработке, то лучше всего использовать алитовый цемент.

Если говорить о крупности КБ сырья, то:

  • Для состава умеренной плотности лучше всего использовать крупно-фракционный керамзит. Такие растворы очень часто выполняют функцию теплоизолирующего материала.
  • Для возведения несущих сооружений подойдет мелкий керамзит.

Полезно! Более мелкие керамзитовые гранулы придают готовому материалу больше веса. Чтобы добиться «золотой середины» используйте смесь из крупных и мелких «камней».

Пропорции для блоков керамзитобетона напрямую зависят от типа работ, которые вы планируете произвести.

Приготовление смеси

Как сделать керамзитобетон, пропорции которого подобраны и готовы для замеса? Для работы используется смеситель принудительного перемешивания, который не допускает изменений гранулометрического состава зерен керамзита и их разрушения.

Длительность замеса зависит от виброукладываемости раствора и составляет 3-6 мин. Благодаря тому, что керамзитобетон быстро теряет удобоукладываемость, допустимо выдерживание ее в форме после приготовления до уплотнения не более 30 сек.

Последовательность закладки компонентов в бетономешалку:

  • вода;
  • пластификатор – если используется;
  • песок, после чего масса тщательно перемешивается;
  • постепенно вводится весь объем керамзита;
  • цемент.

При замешивании гравий должен покрыться цементным раствором. Масса должна быть однородной.

Дозировать материал удобно объемными дозаторами, что обеспечит оптимальный гранулометрический состав.

При более длительном выдерживании можно потерять прочность керамзитобетона, что опасно при производстве материала, предназначенного для стеновых конструкций

Применение керамзитобетона

  • Заполнитель проемов в монолитном строении.
  • Являясь классическим стеновым материалом, керамзитоблоки применяются в различных сферах строительства.
  • Строительство внутренних перегородок.
  • Строительство внешних стен.
  • Иногда этот материал применяют при устройстве стяжки. Благодаря отличительным свойствам материала ускоряется скорость его отвердения и высыхания, а также обеспечивается хорошая звукоизоляция.
  • Керамзитобетон применяется для производства плит перекрытия.
  • В частном секторе керамзитоблоки применяются в строительстве бань и построек хозяйственного типа.

Прослеживая статистику, можно видеть, как керамзитобетон успешно вытесняет кирпич. Потому как материал обладает целым рядом преимуществ.

Как сделать керамзитобетонные блоки самому, видео

Работы могут быть реализованы с участием специального оборудования или без него, что оказывает влияние на качество готового модуля.

Если необходимо сделать керамзитобетонные блоки своими руками, готовая рабочая смесь подвергается формовке:

  • на вибростанке в специальном углублении размещается нержавеющая стальная пластина;
  • на пластину насыпается керамзитобетон;
  • вибрация плотно распределяет и утрамбовывает смесь;
  • излишки снимаются мастерком;
  • пластина с сформированной массой перемещается в сушку.
  • сушка — это завершающий этап. Блоки, находясь в стальных пластинах, сохнут в течение 48 ч. После этого пластины удаляются и процесс продолжается на открытом воздухе до полного созревания.

Если мастер не обладает соответствующим оборудованием существует другой способ изготовления блоков:

  • форма устанавливается на ровную металлическую поверхность;
  • опалубка заполняется раствором;
  • смесь трамбуется деревянным или металлическим бруском, но лучше всего реализовать этот процесс на вибростоле;
  • когда выделится цементное молочко, верхушка модуля выравнивается мастерком;
  • форма снимается через 24-48 ч, блоки оставляются до полного созревания.

Состав

Сделать керамзитобетонную смесь самостоятельно несложно. Главное — выдержать пропорции составных компонентов раствора, которые зависят от предназначения материала.

Стандартные пропорции составных компонентов керамобетона:

  • 1 доля цемента;
  • 2 доли песка;
  • 5 долей керамзита.

Дополнительно в керамзитобетон могут подмешиваться опилки или зола.


Таблица пропорций бетона.

При изготовлении керамобетона сухие компоненты первоначально тщательно перемешиваются без воды, а уже после этого с жидкостью. Такую смесь можно изготовить самостоятельно. Для приготовления керамзитобетонной смеси рекомендуется использовать только чистую холодную воду, т.к. примеси ухудшают затвердевание бетона. При использовании загрязненной воды на поверхности готовых изделий будет проявляться белый налет, поэтому лучше брать питьевую жидкость.

Если нужно сделать строительные блоки, понадобятся специальные формы. В них заливается готовая смесь, уплотняется с помощью вибрационного устройства, при необходимости добавляется нужное количество раствора. После заливки изделия выдерживаются неделю на свежем воздухе.

Керамзитобетон, состав для пола

Подбор пропорций керамзитобетона для пола зависит от эксплуатационной нагрузки покрытия. Если подразумевается обустройство полов бытового назначения, целесообразно использовать указанную рецептуру:

  • цемент М500 – 263 кг;
  • вода – 186 л;
  • песок – 1068 кг;
  • керамзит – 0.9 м³.

Для приготовления рабочей массы используется стандартная бетономешалка. Ручным замешиванием трудно достигнуть однородности рабочей массы

Для керамзитобетона пропорции для стяжки могут варьироваться. Не менее эффективным считается следующий рецепт:

  • цементно-песчаная смесь – 60 кг;
  • керамзит – 50 кг.

Для приготовления цементно-песчаной смеси соотношение компонентов принимается, как 1:3, например, для 45 кг песка потребуется 15 кг цемента.

Пропорции керамзитобетона для пола позволяют выбирать марочную прочность материала. Далее указаны пропорции относительно содержания керамзита, песка, цемента:

  • 7/3.5/1.0 – М150;
  • 7/1.9/1.0 – М300;
  • 7/1.2/1.0 – М400.

Рецептура легкого керамзитобетона

Как уже известно, чем мельче гранулы используемого керамзита, тем плотнее выйдет итоговый материал. Удельная масса легких сортов раствора может достигать 1000 кг/м³. При этом наличие цемента внутри смеси сокращается, а керамзита – наоборот, возрастает. Песка здесь может не быть вообще. Для беспесчаной смеси, рассчитывая на 1м3, применяют следующие пропорции:

  • 720 кг керамзита марки М200;
  • 250 кг цементного песка;
  • 100-150 л воды.

Вернуться к оглавлению

Как сделать керамзит в домашних условиях

Принцип технологического процесса состоит в обжиге глиняного сырья, соответственно оптимальному режиму. Наиболее экономичным способом изготовления является сухой метод. Его целесообразно использовать при наличии глинистого камнеподобного сырья, — глинистых сланцев или сухих глинистых пород.

Согласно технологии, сырье дробится и перенаправляется во вращающуюся печь. Если материал содержит слишком мелкие или крупные куски, они отсеиваются. Последние могут быть дополнительно раздроблены и запущены в производственный процесс.

Мастеру необходимо понимать, что для организации процесса потребуется покупка оборудования и метод оправдывает себя, если исходная порода отличается однородностью, имеет высокий коэффициент вспучивания и не содержит посторонних включений.

Основное оборудование:

  • вальцы тонкого и глубокого помола, камневыделительные вальцы;
  • барабан сушильный;
  • печь для обжига;
  • формовочный агрегат.

Изготовление керамзита весьма энергоемко, поэтому может быть развернуто в домашних условиях лишь при наличии дармового топлива

Вопрос о том, как сделать керамзитобетонные блоки самому, волнует многих начинающих и опытных строителей. Представленные рекомендации помогут разобраться в ходе работ.

Как сделать керамзитобетонные блоки самому показано в видео:

Преимущества и недостатки

Для определения достоинств и недостатков следует обратить внимание на основные характеристики керамзитобетона. Именно от них зависит выбор материала для решения конкретных строительных задач.

Среди основных преимуществ нужно выделить следующие:

  • Небольшая масса готовых изделий. Благодаря пористой структуре керамзита материал имеет малую плотность. Для зданий из керамзитобетонных блоков нет необходимости сооружать громоздкий фундамент, рассчитанный на высокие нагрузки. Самостоятельный монтаж блоков небольшой массы существенно снижает общие трудозатраты и сокращает сроки строительства.
  • Приемлемая прочность. Керамзитобетон можно использовать для сооружения несущих стен и перекрытий, поскольку его прочность незначительно уступает классическому бетону.
  • Хорошие теплоизолирующие свойства. Керамзитобетонные стены и пол обеспечивают сохранение тепла в помещении гораздо лучше, чем выполненные из классического бетона.
  • Прекрасная звукоизоляция. Эта характеристика особенно важна при использовании материала для возведения жилого дома. Помещения будут хорошо защищены от проникновения уличного шума.
  • Экологичность. Это преимущество обусловлено применением в качестве наполнителя керамзита, получаемого из глины. Все компоненты состава не выделяют в атмосферу вредных веществ.
  • Долговечность. Керамзитобетон довольно давно используется в строительстве. За все время применения он зарекомендовал себя как надежный материал, способный прослужить много десятилетий.
  • Низкая стоимость. Благодаря небольшой стоимости керамзита материал можно считать одним из самых дешевых вариантов изготовления бетонной смеси.
  • Простота изготовления и распространенность. Несложная технология производства блоков привела к широкому распространению мелких производств. В связи с этим материал можно приобрести даже в небольших населенных пунктах, что обеспечит дополнительную экономию.
  • Легкое проведение отделочных работ. Поверхность керамзитобетона характеризуется высокой адгезией. На ней прекрасно держатся штукатурные смеси любого состава.

ЧИТАТЬ Особенности газобетонных блоков для строительства дома
Некоторые особенности керамзитобетона создают определенные ограничения в применении. Основным недостатком материала считается высокая влагопроницаемость и повышенное впитывание воды. Влага активно поглощается пористой структурой керамзита. Особенно опасно это свойство при отрицательных температурах, когда накопившаяся жидкость начинает кристаллизоваться и может привести к образованию трещин. По этой причине использовать такой стройматериал можно только в изолированных от погодных воздействий конструкциях. В случае применения материала для возведения наружных стен необходима тщательная гидроизоляция.

К незначительным минусам можно отнести и необходимость в дополнительной теплоизоляции. Несмотря на хорошие теплоизолирующие свойства материала, здания из керамзитобетона требуют утепления наружных стен.

Варианты применения

Керамзитобетон получил широкое распространение в строительстве.
Наиболее популярны два способа его применения:

  • Для изготовления кирпичных блоков.
  • Для создания наливного пола, то есть сооружения стяжки.

Не должно смущать то, что блоки именуются кирпичными. Кирпичами называются строительные элементы заданной формы, из которых сооружается кладка. Материал изготовления не играет роли. Таким образом, любые строительные блоки можно называть кирпичами.

Изредка керамзитобетон применяют и для возведения монолитных стен. Это может потребоваться в зданиях с деревянными перекрытиями, поскольку снижение массы стен является приоритетной задачей.

Изготовление блоков

Чтобы сэкономить на покупке готовых блоков, можно сделать керамзитобетон своими руками. Пропорции компонентов могут незначительно отличаться, однако наиболее популярен следующий рецепт: одна часть цемента; две-три части песка; одна часть воды; три-пять частей керамзита.
Для изготовления раствора рекомендуется использовать бетономешалку, она существенно упростит перемешивание. Большое значение имеет последовательность смешивания компонентов:

  • Первым в бетономешалку или бункер для перемешивания загружается цемент. К нему добавляется песок. Эти сыпучие составляющие необходимо тщательно перемешать.
  • К полученной смеси постепенно добавляется вода, состав перемешивается до получения однородной консистенции.
  • На заключительном этапе в цементный раствор вводится керамзит. Смесь размешивается до равномерного распределения наполнителя.

ЧИТАТЬ Характеристики и сфера использования бетона марки М100

Керамзит чрезвычайно гигроскопичен. Он настолько активно впитывает влагу, что иногда смесь может стать практически сухой. Применять ее в таком состоянии не представляется возможным, поэтому требуется добавить небольшое количество воды. Следует добиваться лишь полного покрытия поверхности керамзита цементным раствором. Доводить смесь до жидкой консистенции нельзя, иначе формирование будущего блока будет нарушено, он может рассыпаться при извлечении из формы или будет иметь серьезные дефекты.

Полученный раствор помещают в заранее приготовленные формы. Необходимо проследить за полным заполнением форм, чтобы исключить образование пустот в готовом изделии.

Для упрощения изготовления смеси не обязательно приобретать цемент и песок отдельно. В продаже имеется готовая сухая смесь, называемая пескобетоном. Рекомендуется применять марку М-300 и выше, это обеспечит достаточную прочность готовым блокам.

Выполнение стяжки

Устройство наливного пола предполагает использование жидкой смеси.


Для ее приготовления смешивают:

  • одну часть цемента;
  • три части песка;
  • одну-две части воды;
  • две части керамзита.

Указанное количество воды можно считать базовым. В процессе перемешивания керамзит будет активно впитывать жидкость. Воду можно добавлять до получения консистенции жидкой сметаны. Раствор составляется и перемешивается в той же последовательности, какая рекомендована для изготовления блоков.

Есть дополнительные условия, которые необходимо соблюдать перед нанесением раствора. Бетонная плита перекрытия не должна контактировать с влагой. Нельзя допускать, чтобы сухой бетон или другой материал основания впитывал воду. Для этого требуется обязательная гидроизоляция. Лучше всего для этих целей использовать специальные готовые составы, имеющиеся в продаже. Обычно они выпускаются в виде мастик или эмульсий. Заблаговременно нанесенное на основание гидроизолирующее средство обеспечит правильное затвердевание смеси с образованием монолитной структуры.

Через пару дней раствор достаточно затвердеет. После этого можно приступать к нанесению финишного слоя. Верхний слой формируют из цементно-песчаной смеси. Для удобства можно использовать готовый пескобетон. Консистенция раствора должна напоминать слегка размягченное сливочное масло. Следует избегать излишка жидкости. Рекомендуемое количество воды обычно указано в инструкции по применению.

Монолитность стяжки достигается по прошествии нескольких дней. Для увеличения прочности рекомендуется поддержание влажного состояния в течение месяца. Для этого пол можно слегка обрызгивать водой или просто накрыть полиэтиленовой пленкой.

Поведение конструкционного легкого бетона, изготовленного с керамзитобетонным заполнителем, и после воздействия высоких температур

Визуальное наблюдение

После тепловой нагрузки поверхностные изменения LWAC распознавались визуальным наблюдением. Когда образцы для испытаний LWAC были нагреты, на их поверхности была видна вода (рис. 6).

Рис. 6

Испарение из образцов LWAC после температурной нагрузки 300 °C

Образцы, изготовленные с заполнителем Liapor HD 5 N, обесцвеченные после воздействия тепловой нагрузки 800 °C (рис.7), однако при более низких температурах не наблюдалось обесцвечивания. Образцы с более высокой прочностью LWA (Лиапор HD 7 N и 8F) выкрашивались в печи при нагреве до 800 °С. Как и у образцов с заполнителем Liapor HD 5 N, материал заполнителя изменил цвет после воздействия тепловой нагрузки. Поверхность агрегата обесцвечивалась и приобретала красноватый оттенок, что можно объяснить окислением железосодержащих минералов.

Рис. 7

Цветовая шкала образцов из керамзитобетона Лиапор HD 5 N

Анализ картины трещин

Образцы охлаждали после тепловой нагрузки до комнатной температуры и подвергали испытаниям (испытание на прочность при сжатии), затем картина трещин был проанализирован.Образцы для испытаний, изготовленные из заполнителя более высокой прочности (7 N, 8F), показали структуру трещин, показанную на рис. 8 (слева), при испытании на прочность при сжатии после тепловой нагрузки до 500 °C. Образцы, изготовленные из заполнителя с более низкой прочностью (5 Н), показали различный характер трещин (рис. 8 справа). Разрушение треснувших частиц заполнителя может быть связано с прочностью керамзитового заполнителя, которая ниже, чем цементная матрица. После тепловой нагрузки 500 °C поверхность излома стала почти вертикальной, было замечено, что поверхность зоны контакта заполнителя и цементной матрицы изменилась под воздействием тепловой нагрузки.

Рис. 8

Образцы для испытаний на керамзитобетон после испытаний на сжатие: бетон на заполнителе Лиапор 8Ф, Л2 (слева), и бетон на заполнителе Лиапор HD 5 Н, Л1 (справа) после высокотемпературного воздействия до 500 °С

Испытание образцы с заполнителем 5 Н обеспечили картину разрушения, показанную на рис. 9, при испытании на сжатие, проведенном после тепловой нагрузки 800 °С. После испытания было замечено, что частицы LWA треснули и частично выпали. Вероятно, это произошло потому, что прочность керамзитового заполнителя после тепловой нагрузки примерно равна прочности на сжатие цементной матрицы.Прочность керамзитового заполнителя при тепловой нагрузке не изменилась, так как он был изготовлен при высокой температуре (1100–1200 °С). Но при тепловой нагрузке прочность цементной матрицы снижалась. После тепловой нагрузки 800 °C образец показал пирамидальную форму излома, и было видно разрушение цементной матрицы.

Рис. 9

Liapor HD 5 N Образец бетона на заполнителе (M1) испытания на прочность при сжатии после тепловой нагрузки до 800 °C

Остаточная прочность при сжатии

Значения остаточной прочности при сжатии представлены на рис.10, 11, 12 в разном сравнении. Эти значения должны быть получены путем деления значения прочности на сжатие, измеренного после заданной тепловой нагрузки, на прочность при 20 °C, с получением степени снижения прочности в процентах. Средняя остаточная прочность на сжатие (после тепловой нагрузки и охлаждения до комнатной температуры) обсуждается в следующих разделах с точки зрения влияния LWA, типа LWA и метода уплотнения.

Рис. 10

Остаточная прочность на сжатие NWAC и обычного LWAC с Liapor HD 5 N

Рис.11

Остаточная прочность на сжатие различных смесей LWAC

Рис. 12

Остаточная прочность на сжатие нормальноуплотненных и самоуплотняющихся бетонов с кварцевым и керамзитовым заполнителем

Влияние количества легкого заполнителя

Результаты определения остаточной прочности на сжатие NWAC и LWAC показаны на рис. 10. Количество LWA в смеси L1 составляет 50% по объему, а в смеси L3 и L3F — только 30%. При сравнении остаточной прочности на сжатие после нагревания было обнаружено увеличение остаточной прочности LWAC после тепловой нагрузки 150 °C по сравнению с NWAC.Обычный LWAC (например, Liapor 5 N) является высокопористым. Эти открытые поры могут содержать воду, которая испаряется при температуре выше 100 °C. После более высокой температурной нагрузки в случае того же класса прочности на сжатие поведение NWAC аналогично LWAC. Когда содержание LWA выше, остаточная прочность на сжатие также выше. Более высокая прочность была измерена в бетонах с заполнителем Liapor HD 5 N (L1, L3 и L3F) после тепловой нагрузки 150 °C, чем при комнатной температуре. Это можно объяснить высокой водопоглощающей способностью заполнителя.

После 150 °C испарение воды, содержащейся в заполнителе, увеличило остаточную прочность бетона на сжатие. При температуре выше 300 °C можно было наблюдать постепенное снижение прочности на сжатие. Это почти то же самое, что и измеренное при 20 °C. В случае LWAC отношение начальной прочности к остаточной прочности, измеренной после выдержки при температуре 800 °C, более благоприятное, чем у NWAC. Это может быть связано с его высокой пористостью (67%) и открытопористой структурой заполнителя.Тип LWA был одинаковым в этой серии, но количество LWA в смеси L1 на 75% выше, чем в L3 и L3F. Более высокое содержание LWA было более благоприятным даже при более низком водоцементном отношении. Этот эффект особенно заметен при температуре выше 300 °C. L3 более чувствителен к теплу, в основном из-за различных типов цемента и объемов цемента. Однако L3F сильнее реагировал на повышение температуры, чем смесь L3. Этот результат следует из добавления полипропиленовых волокон, влияние полипропиленовых микроволокон при применении LWA иное, чем при использовании NWA.В случае пористого заполнителя добавление 1 % полипропиленового волокна не увеличивает остаточную прочность на сжатие (L3 и L3F).

Влияние легкого заполнителя типа

Соотношение между остаточной прочностью на сжатие и температурой показано на рис. 11 в случае обычного (5 N) и высокопрочного (7 N и 8F) типов керамзитового заполнителя. L2 и L4 готовятся с использованием более прочных заполнителей и изначально демонстрируют такое же снижение прочности на сжатие, как и NWC.Остаточная прочность на сжатие отражала почти постоянный уровень между 150 и 500 °C, при 150 °C не было увеличения по сравнению с обычным LWA (5 Н). В результате тепловой деформации цементной матрицы на поверхности контакта частиц заполнителя и цементной матрицы образуются микротрещины заполнителя, а остаточная прочность на сжатие снижается до 500 °С. Снижение прочности на сжатие до 500 °С достигало примерно 20%. Такое снижение прочности вызвано распадом портландита при температуре от 450 до 550 °C, а также разным тепловым расширением заполнителя и цементной матрицы.После 500 °C наблюдалось дальнейшее снижение прочности, вызванное превращением соединений C-S-H. Выше 500 °С прочность ННК снижается из-за изменения объема кварца (при 573 и 867 °С). Температура обжига керамзитобетона при изготовлении составляет 1200°С, что может быть причиной лучшего поведения ВАУ выше 500°С. Это верно только в том случае, если LWA полностью набухла во время изготовления. Если он не полный, то при термической обработке происходит постепенное увеличение объема, что приводит к растрескиванию образца.Такое изменение объема LWA наблюдалось при самом сильном типе LWA (8F). После тепловой нагрузки 800 °С образцы смеси Л2 разрушались, остаточную прочность на сжатие принимали за ноль.

Можно сделать вывод, что составы бетона с LWA ведут себя оптимально до 500 °C, чем составы с заполнителями из кварцевого гравия. Наиболее предпочтительным типом LWA был Liapor HD 5 N (L1), а наименее благоприятным — Liapor 8F (L2). Наиболее важное различие заключалось в пористости заполнителя, где более высокая пористость благоприятна при воздействии огня.На остаточную прочность бетона на сжатие влияет способ передачи нагрузки между различными составными частями бетона. Режим передачи нагрузки зависит от условий прочности и жесткости отдельных составных частей бетона. Чрезмерные напряжения, возникающие от давления, передаются на компоненты с более высокой прочностью и более высоким уровнем жесткости. Слой строительного раствора передает большую часть нагрузки между частицами заполнителя в обычном LWAC, но в случае высокопрочного LWA траектории проходят через частицы заполнителя.

СВАЦ разрушается при тепловой нагрузке в зоне контакта, вызванной разницей между модулями упругости заполнителя и цементной матрицы соответственно, а также дегидратацией слоев портландита и эттрингита, отложившихся на поверхности заполнителя. На поверхности заполнителя конденсируется тонкая водяная пленка, в результате чего портландит и эттрингит кристаллизуются в нем. Сжимающие траектории проходят через частицы заполнителя и цементную матрицу и избегают LWA.Поведение высокопрочного бетона иное: гидроксид кальция вступает в реакцию с порошком кремнезема и образует гидрат кремнезема кальция, что повышает прочность строительного слоя в зоне контакта с отложившимися на поверхности частицами заполнителя. Поэтому типичным местом разрушения в высокопрочном бетоне является не зона контакта, а заполнитель, где может произойти расщепление частиц заполнителя.

Влияние метода уплотнения

Было проведено сравнение обычных уплотненных и самоуплотняющихся бетонов с обычным и легким заполнителями.Смесь N2 представляла собой самоуплотняющийся высокопрочный бетон (СББК), а смесь L5 имеет такую ​​же матрицу из цементного раствора с высокопрочным керамзитовым заполнителем (табл. 1 и 2). На рисунке 12 показаны результаты определения остаточной прочности на сжатие.

Поведение обычного бетона и бетона SCHS с точки зрения остаточной прочности на сжатие одинаково до 500 °C. При более высокой температуре СКСН благоприятнее, СКСН не теряют прочности до 500 °С. Причина в идеальной структуре пор, полученной методом самоуплотнения.Этот эффект от метода уплотнения в сочетании с системой пор легкого заполнителя является более благоприятным, и он наблюдается и при температуре выше 500 °С.

Разработка пропорций смеси геополимерного легкого заполнителя с LECA | Интернет-исследования в области здравоохранения и окружающей среды (HERO)

ID ГЕРОЯ

7195961

Тип ссылки

Журнальная статья

Заголовок

Разработка пропорций смеси геополимерного легкого заполнителя бетона с LECA

Авторы)

Приянка, М; Картикеян, М; Чанд, MSriR; ,

Год

2020

Издатель

ЭЛЬЗЕВЬЕР

Место нахождения

АМСТЕРДАМ

Номера страниц

958-962

DOI

10.1016/ж.матпр.2020.01.271

Идентификатор Web of Science

WOS:000544130700020

Абстрактный

Легкий геополимерный бетон (LWGPC) – это инновационный материал, сочетающий в себе преимущества легкого бетона и геополимерного бетона. Этот бетон обеспечивает выдающееся решение для снижения собственного веса конструкции при использовании материалов с нулевым процентом содержания цемента и расширения области применения геополимерного бетона (GPC).В этом исследовании исследуется прочность геополимерного бетона на основе летучей золы, изготовленного из легкого керамзитобетона (LECA). Было приготовлено 20 бетонных смесей, чтобы получить соответствующий состав смеси для LWGPC. В качестве щелочного активатора использовали смесь гидроксида натрия и силиката натрия с молярностью 8. Переменные в исследовании включают отношение щелочи к вяжущему и процентное содержание LECA для производства бетона плотностью 1800 кг/м3 (3) и 2000 кг/м3 (3). Свежие и твердые характеристики LWGPC обсуждаются в виде осадки и прочности на сжатие соответственно.(C) 2019 Elsevier Ltd. Все права защищены. Отбор и рецензирование под ответственность научного комитета Первой международной конференции по перспективным легким материалам и конструкциям.

Название конференции

1-я Международная конференция по передовым легким материалам и конструкциям (ICALMS)

Место проведения конференции

Хайдарабад, ИНДИЯ

Прочность легкого керамзитобетона

%PDF-1.7 % 1 0 объект > /Метаданные 2 0 R /Страницы 3 0 Р /PageLayout /Одностраничный /OpenAction 4 0 R /Инфикс > /UserRestrictions 19 0 Ч /ModDate (D:20141014035721) /МаксГИД 13 /Изменения [20 0 R 21 0 R] >> /Тип /Каталог /PageLabels 22 0 R >> эндообъект 23 0 объект /ICNAppVersion (4.31) /Создатель (Эльзевир) /Производитель (Acrobat Distiller 10.0.0 \(Windows\)) /ElsevierWebPDFSpecifications (6.4) /роботы (без индекса) /ModDate (D:20141026084401+05’30’) /doi (10.1016/j.proeng.2013.09.002) /ICNAppName (Инфикс Pro) /Заголовок (Долговечность легкого керамзитобетона) /ICNAppPlatform (Windows) >> эндообъект 2 0 объект > поток приложение/pdf10.1016/j.proeng.2013.09.002

  • Прочность легкого керамзитобетона
  • Михала Хубертова
  • Рудольф Хела
  • керамзитовый заполнитель
  • легкий бетон
  • долговечность
  • Procedia Engineering, 65 (2013) 2-6. doi:10.1016/j.proeng.2013.09.002
  • Эльзевир Б.В.
  • журналProcedia Engineering© 2013 The Authors show Опубликовано Elsevier B.V. Открытый доступ по лицензии CC BY-NC-ND. .2013.09.002noindex4.31Infix ProWindowsElsevier2014-10-26T08:44:01+05:302013-09-19T21:00:45+05:302014-10-26T08:44:01+05:30TrueAcrobat Distiller 10.0.0 (Windows) UUID: d71f17e2-4a99-4543-9467-5d90a5c6106buuid: 0fcc1791-c0da-4e3d-866c-4f40b104dd1b конечный поток эндообъект 3 0 объект > эндообъект 4 0 объект > эндообъект 5 0 объект > поток 15502 конечный поток эндообъект 6 0 объект > эндообъект 7 0 объект > эндообъект 8 0 объект > эндообъект 9 0 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > эндообъект 18 0 объект > эндообъект 19 0 объект > эндообъект 20 0 объект > эндообъект 21 0 объект > эндообъект 22 0 объект > эндообъект 24 0 объект > /Цветное пространство > /Шрифт > /ProcSet [/PDF /текст /ImageB] /ExtGState > >> /Тип /Страница >> эндообъект 25 0 объект > /Шрифт > /ProcSet [/PDF /текст] /ExtGState > >> /Тип /Страница >> эндообъект 26 0 объект > /Шрифт > /ProcSet [/PDF /текст] /ExtGState > >> /Тип /Страница >> эндообъект 27 0 объект > /Шрифт > /ProcSet [/PDF /текст] /ExtGState > >> /Тип /Страница >> эндообъект 28 0 объект > /Шрифт > /ProcSet [/PDF /текст] /ExtGState > >> /Тип /Страница >> эндообъект 29 0 объект > эндообъект 30 0 объект > эндообъект 31 0 объект > /А 85 0 Р /С [0.꠫Z7fł80_I8 1;’/;~Oo_NcpFqg1YB&!$O&ɃɃ7;h3mA.Iƻt%TNlȜNȝH

    Исследование влияния электрического нагрева керамзитобетонной смеси на структуру и свойства легкого керамзитобетона при воздействии высоких температур

    Аннотация

    Цель. Цель исследования – изучение влияния предварительного электроподогрева бетонной смеси на структуру и свойства жаропрочного керамзитобетона на композиционном вяжущем перед сушкой при температуре 105°С.Метод. В ее основу положен отечественный и зарубежный опыт изучения влияния предварительного электрообогрева на свойства и структуру различных бетонов, в том числе жаростойких. Результат. Разработан и испытан лабораторный стенд для предварительного электроподогрева смесей. Исследовано влияние предварительного электрообогрева на процесс самопропаривания жаропрочного керамзитобетона. Разработан режим предварительного электроподогрева жаростойкой керамзитобетонной смеси во времени.Получены зависимости напряжений за счет различия температурных коэффициентов линейного расширения крупного и мелкого заполнителей и растворной части от температуры нагрева, а также зависимости предела прочности керамзитобетона от температуры нагрева керамзитобетона. бетонная смесь при различных режимах предварительного подогрева на композиционном вяжущем при соотношении компонентов: портландцемент 70%, минеральная добавка 30%. Заключение. На основании полученных результатов и анализа проведенных исследований в области предварительного электроподогрева бетонных смесей можно сделать вывод, что предварительный электроподогрев смеси для жаростойких бетонов с керамзитовым заполнителем на основе активированного композиционного вяжущего будет позволяют получить бетон с более высокими физико-тепловыми и эксплуатационными характеристиками, а также сократить технологический процесс изготовления жаропрочных изделий, период сушки и вывода теплового агрегата на рабочий режим.

    Прочность легкого самоуплотняющегося бетона

    Башанды А. А. 1 , Этман З. А. 1, 2 , Азиер Х. Ю. 3

    1 Доцент, инженер-строитель. Кафедра инженерного факультета Университета Менуфия, Египет

    2 Доцент, инженер-строитель. Кафедра, Высший инженерно-технологический институт, Менуфия, Египет

    3 Инженер-строитель и М.наук Кандидат 1

    Адрес для переписки: Азиер Х.Ю., инженер-строитель и магистр наук. Кандидат 1.

    Электронная почта:

    Copyright © 2019 Автор(ы). Опубликовано Scientific & Academic Publishing.

    Эта работа находится под лицензией Creative Commons Attribution International License (CC BY).
    http://creativecommons.org/licenses/by/4.0/

    Аннотация

    Легкий бетон является отличной альтернативой с точки зрения снижения статической нагрузки конструкции, а самоуплотняющийся бетон облегчает заливку и уплотнение во время строительства. Объединение преимуществ обоих типов является новой областью исследований.Учитывая его легкую структуру и простоту укладки, легкий самоуплотняющийся бетон может стать ответом на растущие требования к строительству сильно армированных структурных элементов. Основными переменными в этом исследовании являются коэффициент замены легкого керамзитового заполнителя LECA с использованием суперпластификаторов. Предлагаемый подход основан на модифицированном составе смеси и включает возможности реализации LW-SCC в зависимости от двух основных параметров: класса плотности и класса прочности на сжатие.Для этого было использовано 12 бетонных смесей. Были проведены испытания бетонных образцов для определения прочности на сжатие, модуля упругости и прочности на растяжение. Также был измерен удельный вес. Эти испытания позволили понять поведение легких самоуплотняющихся бетонов при воздействии хлоридов или сульфатов. Результаты показали, что лучшая прочность достигается при использовании коэффициента замещения 50% при более низком весе примерно на 30% по сравнению с самоуплотняющимся бетоном нормального веса.Также показано, что возможно изготовление конструкционного легкого самоуплотняющегося бетона с достаточной прочностью. Следовательно, его можно использовать для строительных целей и сборных железобетонных изделий с умеренной стоимостью и удовлетворительной прочностью.

    Ключевые слова: Легкий самокомпактный, Бетон, Долговечность, LECA

    Ссылайтесь на эту статью: Башанды А.А., Этман З.А., Азиер Х.Ю., Прочность легкого самоуплотняющегося бетона, Международный журнал строительной инженерии и управления , Vol. 8 № 5, 2019. С. 127-135. doi: 10.5923/j.ijcem.201.01.

    1. Введение

    Достижения в современной технологии бетона привели к внедрению легкого бетона (LWC) и самоуплотняющегося бетона (SCC). LWC как средство для уменьшения массы конструкции, которое хорошо известно в строительной отрасли как отличное решение для снижения статической нагрузки конструкции, а SCC как удобоукладываемый бетон представляет собой современный бетон, облегчающий заливку и заливку бетонных элементов без уплотнения.В последние годы были предприняты попытки объединить преимущества этих двух типов бетона в одном пакете, называемом легким самоуплотняющимся бетоном LW-SCC [1]. Тремя основными характеристиками бетона являются удобоукладываемость, прочность и долговечность. Считается, что удобоукладываемость связана со свежим бетоном, а прочность и долговечность связаны с затвердевшим бетоном. Другими словами, состав смеси и свойства свежего бетона являются наиболее важными моментами для контроля механических характеристик затвердевшего бетона [2].Как правило, прочность на сжатие LW-SCC является основным параметром для оценки других его механических свойств. Несмотря на доступные исследования преимуществ LW-SCC, связанных с его высокими характеристиками в свежем состоянии, имеется меньше доступных исследований, касающихся ожидаемых свойств закалки для механических реакций, таких как прочность на сжатие. LW-SCC очень чувствителен к изменениям свойств компонентов смеси и их пропорций; поэтому требуется повышенный контроль качества. Типичные характеристики пропорций смеси LW-SCC, которые необходимы для обеспечения адекватных свойств свежего бетона, могут оказывать значительное влияние на свойства затвердевшего бетона, такие как прочность, стабильность размеров и долговечность [3].Ранняя оценка свойств затвердевшего бетона очень важна. Проблема в том, что после процесса закалки качество и механические свойства не улучшаются. Структурное поведение бетона зависит от пропорций смешивания и свойств материала композитной системы, и эти факторы не меняются после затвердевания. Несмотря на различные своды правил по составлению смеси LWC и некоторые редкие публикации в литературе о SCC, нет справочного и технического проекта по составлению смеси LW-SCC и ее применению.Однако из-за ожидаемых преимуществ LW-SCC с точки зрения экономической эффективности и сокращения времени строительства исследования, направленные на понимание сложной природы этого нового материала, все активнее проводятся в разных частях мира. LWAC, смешанный с другими легкими заполнителями, также демонстрирует преимущества в отношении веса конструкции, сейсмостойкости, а также защиты и предотвращения пожаров. Таким образом, он более энергоэффективен, полезен для предотвращения стихийных бедствий, идеально подходит для высотных зданий, требующих антисейсмических конструкций, и снижает потребление энергии.Кроме того, к свойствам LWAC относятся высокая прочность, теплоизоляция, звукопоглощение, водонепроницаемость, противопожарная защита, высокая прочность, стабильность объема, простота использования и экономичность [4]. Например, прочность на сжатие LW- SCC зависит от типа заполнителя и отношения воды к цементу и воды к общему порошку [5]. Соотношение между цементным тестом и заполнителями очень важно при составлении бетонной смеси. SCC имеет большее количество пасты, чем обычный бетон и LWC, чтобы облегчить растекание заполнителей для заполнения любых пустот внутри опалубки.Покрытие заполнителей пастой для уменьшения трения и непосредственного соприкосновения заполнителей может улучшить текучесть свежего бетона. Контролируя соотношение воды и цемента, можно получить более плотный и прочный бетон. В LW-SCC эта проблема еще более очевидна из-за недостаточности начальной энергии легких заполнителей по отношению к перемещению вместе с легкими заполнителями в цементном тесте [6]. Поэтому важно соблюдать баланс между пропорциями LW-SCC для достижения требуемой текучести в свежем состоянии и запланированной плотности и высокого качества в отвержденном состоянии.Теория плотности упаковки представляет собой метод расчета бетонной смеси, который успешно используется в LW-SCC путем определения оптимального соотношения пустот упаковки раствора и заполнителей [6]. Основными шагами для достижения состава смеси LW-SCC в этом методе являются: (а) минимизация объемов пустот, связанных с крупным заполнителем, (б) минимизация соотношения воды и цемента, (в) максимизация плотности цементирующих материалов и (d) оптимизация текучести и требований к свежему бетону. Теперь, когда доступен ряд запатентованных LWA, производимых в основном с использованием промышленных побочных продуктов, таких как летучая зола и доменный шлак, можно легко изготовить LWC в диапазоне прочности 30–80 МПа.Ранее авторы оценили и сообщили о долговременном развитии прочности и характеристиках долговечности ЛБК, изготовленных из облегченных крупных и легких мелких заполнителей [6]. Исследования долговечности самоуплотняющегося бетона с легким заполнителем (SCC), изготовленного из керамзитобетона (LECA), частично заменяющего обычный крупный заполнитель. Исследования, проведенные различными исследователями с использованием некоторых легких заполнителей в SCC, показали, что легкий самоуплотняющийся бетон LW-SCC может быть изготовлен и использован при разумном выборе типа LWA [8].Исследования долговечности включают устойчивость к хлоридам и сульфатам. Плотность LW-SCC варьировалась от 1870 кг/м 3 до 1950 кг/м 3 . Прочность – очень важное инженерное свойство бетона. В настоящих исследованиях были изучены некоторые прочностные свойства обычного бетона SCC и легкого бетона SCC, такие как химическое воздействие (воздействие хлоридов и сульфатов), капиллярное водопоглощение с помощью теста на сорбцию. В статье описаны детали исследований и результаты LW-SCC на основе LECA.Основные критерии, необходимые для получения легкого самоуплотняющегося бетона: высокая деформируемость, высокая проходимость или сопротивление сегрегации [9].

    2. Научное значение

    Существует множество публикаций о LWC, касающихся различных легких заполнителей и пропорций смеси. Тем не менее, SCC является совершенно новой темой в строительной отрасли, и поэтому она вызывает растущий интерес исследователей, особенно в последнее десятилетие. Поскольку LW-SCC представляет собой комбинацию двух материалов, а одна часть полностью не исследована, необходимо провести гораздо больше маркетинговых исследований.
    Важность этого исследования заключается в определении характеристик LW-SCC по сравнению с обычным бетоном SCC при воздействии хлоридов и сульфатов. Ожидается, что результат этого исследования уменьшит вес бетона, избегая нежелательных результатов потери прочности бетона из-за атаки. Несмотря на ограниченное количество публикаций, собранные данные кажутся достаточными для достоверной и полезной систематической оценки разнообразия параметров и свойств смесей в статистических выражениях.Прежде всего, это разовьет представление о том, чего можно ожидать от LW-SCC или потенциальных пользователей и исследователей. Это также дает заинтересованным и вовлеченным людям контекст, в котором они могут оценивать свою собственную практику и информировать других исследователей о своих продуктах. Поскольку LW-SCC является новой темой в строительной отрасли, всесторонний сбор данных на сегодняшний день, сопровождаемый аналитическими сравнениями, станет ключевой отправной точкой для предстоящих исследований и применения LW-SCC в реальных проектах.Основными задачами данного исследования являются; оценить возможность использования некоторых допустимых легких заполнителей в качестве частичной замены обычных заполнителей для получения конструкционного легкого самоуплотняющегося бетона LW-SCC и изучить долговечность этого типа бетона при воздействии хлоридов и сульфатов в качестве долгосрочного поведения. Результаты этого исследования могут быть использованы для производства легкого самоуплотняющегося бетона, сочетающего в себе преимущества обоих типов в области строительства.

    3. Экспериментальная программа

    Все испытания проводились в лаборатории строительных материалов факультета гражданского строительства инженерного факультета Университета Менуфия.
    3.1. Материалы
    В качестве цемента используется обычный портландцемент CEM I 52,5 N производства Суэцкого завода, соответствующий египетским стандартным спецификациям (E.S.S. 4756-1/2012) [10]. Мелким заполнителем является природный кремнистый песок, соответствующий требованиям (Е.С.С. 1109/2008) [10].Механические свойства мелких заполнителей показаны в таблице (1), а классификация показана в таблице (2). Крупный заполнитель представляет собой природный измельченный доломит с максимальным размером 10 мм, удовлетворяющим требованиям ASTM C-33 [10], как показано в таблицах (3) и (4). В качестве легкого заполнителя использовали керамзитобетон (LECA) со свойствами, указанными в таблице (5). Он был изготовлен во вращающейся печи с внутренней футеровкой зоны обжига огнеупором. Микрокремнезем (кремнезем) — продукт производства ферросилициевых сплавов.Продукт представляет собой богатый порошок диоксида кремния, средний размер частиц которого составляет около 0,1 микрометра. В качестве загустителя (VEA) использовали BASF MasterGlenium SKY 504 и Master matrix 110 Химический суперпластификатор (СП) на основе поликарбонового эфира для производства товарного бетона высокого качества с низким водоцементным отношением и исключительной удобоукладываемостью. Он содержит смесь на основе сополимера на основе поликарбоновой кислоты и модифицированный целлюлозный продукт для достижения эффекта двойного действия понизителя воды высокого диапазона и добавки для изменения вязкости соответственно.Соответствует требованиям к суперпластификаторам согласно европейской спецификации [EN934-2] и американской спецификации [ASTM-C-494 тип G и F). Механические и физические свойства приведены в таблицах (6) и (7).
    Таблица (1) . Физические и механические свойства песка используются
    Таблица (2) . Оценка мелкого агрегата в соответствии с (ASTM C33) и сортировка натурального песка используется
    Таблица (3) . физических и механических свойств доломита используются
    Таблица (4) . сортировка для грубой агрегата по ASTM C33 и сортировка натурального доломита используется
    Таблица (5) . Химические и физические свойства агрегатов
    Таблица (6) . Техническая информация о мастергелевом небе 504 «(как предусмотрено производителем)
    Таблица (7) . Техническая информация MasterMatrix® 110″ (предоставляется производителем)
         

    3204. Бетонные образцы

    Были проведены испытания бетонных образцов для определения прочности на сжатие, модуля упругости и прочности на растяжение.Также был измерен удельный вес. Эти тесты позволили понять поведение этих легких бетонов. Стандартные бетонные кубы со сторонами 100x100x100 мм и 150x150x150 мм со встроенным стержнем диаметром 12 мм использовались для определения прочности на сжатие (FCU) и прочности сцепления (Fb) соответственно. Стандартные бетонные цилиндры 100х200 мм, испытание на непрямое растяжение (методом раскалывания) и 150х300 мм были проведены для определения прочности на растяжение и модуля упругости бетонных смесей соответственно.Призмы размером 100x100x500 мм были отлиты и использованы в качестве образца для испытаний на изгиб (fcr). Усиленные балки LW-SCC размером 100x150x1000 мм были отлиты для изучения поведения железобетонных балок, отлитых с использованием этого типа бетона, как показано на рис. (1).
    Рис. Ур 1 . Образцы бетона
    3.3. Отверждение бетона
    Отверждение проводят традиционным способом (отверждение водой) для обычных образцов бетона, при этом образцы выдерживали в формах в течение 24 часов, затем их извлекали и погружали в чистую воду для отверждения при комнатной температуре в диапазоне 25-32 °C до возраста испытаний.
    3.4. Моделирование сульфатной атаки
    Для имитации сульфатной атаки образцы были погружены в раствор MgSO4 с концентрацией 20% на период до 4 месяцев непрерывного погружения и циклического погружения. Все образцы погружаются в воду, а затем испытываются через 2 и 4 месяца соответственно. Результаты сравнивают с контрольными образцами LW-SCC A5 в качестве контрольной смеси. Испытываемые образцы представляют собой стандартные кубы, цилиндры и призмы для получения значений прочности на сжатие, раскалывание, растяжение и изгиб.Эффекты воздействия сульфатов проявляются в показателях прочности на сжатие, раскалывание, растяжение и изгиб.
    3.5. Моделирование воздействия хлоридов
    В этих экспериментах моделирование воздействия хлоридов выполнялось путем непрерывного погружения и циклического погружения образцов в 5% раствор HCL в течение 4 месяцев. Все образцы погружаются в воду, а затем испытываются через 2 и 4 месяца соответственно. Результаты сравнивают с контрольными образцами LW-SCC A5 в качестве контрольной смеси.Испытываемые образцы представляют собой стандартные кубы, цилиндры и призмы для получения значений прочности на сжатие, раскалывание, растяжение и изгиб. Эффекты воздействия сульфатов проявляются в показателях прочности на сжатие, раскалывание, растяжение и изгиб.
    3.6. Процедуры испытаний
    Экспериментальная программа проводилась в два этапа. Первый этап был выполнен для получения структурного LW-SCC. Это было проведено двумя методами; один, смесь A из LW-SCC, путем замены обычного крупного и мелкого заполнителя легким заполнителем (вспученный легкий заполнитель LECA) в качестве частичной замены (на 10%, 20%, 30%, 40%, 50%, 60% используемого доломита) и другой, Mix B LW-SCC, с использованием воздухововлекающих добавок.. Вторая часть была проведена для оценки долговечности LW-SCC при воздействии сульфатов или хлоридов. Испытания проводились с точки зрения свойств свежего бетона и свойств затвердевшего бетона. Испытание на осадку было проведено для оценки пластической консистенции свежих смесей в соответствии с Кодексом практики Египта (ECP 203/2018) [10], как показано на рис. (2) и в таблице (8) показаны результаты оседания. Свойства затвердевшего бетона были получены с точки зрения прочности на сжатие, растяжение при раскалывании и изгиб.
    Рис. J-кольцо и испытание LW-SCC

    4. Результат и обсуждение

    4.1. Основные свойства образцов LW-SCC
    Были получены свойства свежего и затвердевшего бетона контрольных смесей LW-SCC. Разработка с использованием LECA в качестве крупного заполнителя с 12 дорожными смесями для улучшения легкого самоуплотняющегося концерта, как показано на рис.(1). Была получена прочность на сжатие 70 МПа. Сравнение смесей LW-SCC для получения конструкции смеси с удельным весом менее 1900 кг/м 3 и прочностью на сжатие более 28 МПа.
    4.1.1. Прочность на сжатие
    Прочность на сжатие кубиков LW-SCC в возрасте 3, 7 и 28 дней была получена, как показано на рис. (3). значения прочности на сжатие брались как среднее 3 одинаковых кубов. Полученные результаты испытаний показали, что прочность на сжатие смеси А5 соответствует показанной на рис.(7) и (8). Результат показал, что LW-SCC всегда меньше, чем обычные, по проценту замены заполнителей на LECA, начиная с 10%, 20%, 30%.40%, 50% и 60%, прочность на сжатие снижается на 19,39%, 28,33%, 35,1%, 39,1%, 42,22% и 45,14% соответственно и за счет аэрированной добавки прочность на сжатие снизилась на 22,1%, 32,02%, 39,81%, 45,7%, 52,02% и 61,04% соответственно. Значения прочности регистрировали, как показано в Таблице (8).
    Стол (8) . Соотношение используемых смесей NW-SCC и LW-SCC
    4.1.2. Прочность на растяжение при раскалывании
    Прочность на растяжение при раскалывании цилиндров LW-SCC в возрасте 28 дней была получена, как показано на рис. (5). значения прочности на разрыв при раскалывании были взяты как среднее значение для 3 идентичных цилиндров. Результат показал, что LW-SCC всегда меньше, чем обычные, связанные с процентом замены агрегатов на LECA, начиная с 10%, 20%, 30%.40 %, 50 % и 60 %, предел прочности при раскалывании снижается на 10 %, 27,3 %, 27,3 %, 31,8 %, 45,5 % и 50 % соответственно, а за счет аэрированной добавки предел прочности при раскалывании снижается на 22,1 %, 32,02 %. , 39,81%, 45,7%, 52,02% и 61,04% соответственно. Значения прочности регистрировали, как показано на рис. (9).
    Рис. Ур 3 . Испытание на прочность при сжатии
    Рис. Ур 4 . Тест модуля упругости
    Рис. Испытание на прочность при растяжении при раскалывании
    4.1.3. Прочность на изгиб
    Прочность на изгиб призм LW-SCC в возрасте 28 дней была получена, как показано на рис. (6). значения прочности на изгиб принимались как средние значения трех одинаковых призм.
    Рис. 6 . Испытание бетонных призм на изгиб 100*100*500 мм
    Рис. Прочность на сжатие группы «А» образцов LW-SCC разного возраста
    Рис. Прочность на сжатие группы «В» образцов LW-SCC разного возраста
    Результат показал, что LW-SCC всегда меньше, чем обычные, связанные с процентом замены агрегатов на LECA начиная с 10%, 20%, 30%.40 %, 50 % и 60 %, прочность на изгиб снижается на 3,33 %, 10,4 %, 15,12 %, 22,8 %, 35,5 % и 41,1 % соответственно, а за счет аэрированной добавки прочность на разрыв при раскалывании снижается на 12,11 %, 19,3 %, 28,31%, 34,7%, 42,02% и 48,25% соответственно. Значения прочности регистрировали, как показано на фиг.10.
    Рис. 9 . Значения прочности на разрыв при расщеплении для контрольной смеси, смесей «А» и смесей «В» через 28 дней
    Рис. Значения прочности на изгиб для контрольной смеси, смесей «А» и смесей «В» через 28 дней
    4.1.4. Модули эластичности
    Модули эластичности цилиндров LW-SCC в возрасте 28 дней были получены, как показано на рис. (4). значения модулей упругости брались как среднее 3-х одинаковых цилиндров. Результат показал, что LW-SCC всегда меньше, чем обычные, связанные с процентом замены агрегатов на LECA, начиная с 10%, 20%, 30%.40%, 50% и 60%, модули упругости уменьшились на 12,78%, 28,1%, 38,12%, 38,8%, 40,2% и 45,1% соответственно и за счет аэрированной добавки модули упругости уменьшились на 28,27%, 31,12 %, 37,50%, 41,8%, 48,9% и 51,06% соответственно. Значения прочности регистрировали, как показано на фиг.12.
    4.1.5. Относительная прочность связи
    Относительная прочность связи кубиков LW-SCC, заделанных диаметром 12 мм в возрасте 28 дней, была получена таким образом, что LW-SCC всегда меньше, чем обычные, связанные с процентом замены агрегатов на LECA, начиная с 10 %, 20%, 30%.40%, 50% и 60%, напряжение уменьшилось на 21%, 32%, 41%, 47%, 52% и 57% соответственно, а за счет аэрированной добавки напряжение уменьшилось на 35%, 41%, 57% , 60%, 63% и 71% соответственно. Значения относительной силы связи регистрировали, как показано на рис. (11).
    Рис. 11 . Значения относительного напряжения сцепления для контрольной смеси, смесей «А» и смесей «В» через 28 дней
    Рис. Значения модуля упругости и прочности для контрольной смеси, смесей «А» и смесей «В» через 28 дней
    4.2. Долговечность LW-SCC Образцы
    Данное исследование проводилось в основном для изучения долговечности LW-SCC из-за попадания 5%-ной концентрации хлорида и 20%-ной концентрации сульфата, изучались характеристики коррозионного потенциала.
    4.2.1. LW-SCC при воздействии хлоридов
    Смесь LW-SCC «A5» была выбрана как лучшая смесь для изучения ее стойкости при воздействии хлоридов.
    Прочность на сжатие образцов LW-SCC снизилась после воздействия хлорида в течение 2 месяцев при непрерывном и циклическом погружении в раствор хлорида примерно на 12,6% и 7,94% соответственно по сравнению с контрольными образцами A5, как показано на рис. ( 13). Через 4 месяца прочность на сжатие образцов LW-SCC снизилась при погружении и циклическом погружении в раствор хлорида примерно на 33,3% и 26,98% соответственно по сравнению с контрольными образцами A5, как показано на рис. (13).
    Рис. Прочность на сжатие LW-SCC, смесь «А5», при воздействии хлоридов 5% концентрации через 2 и 4 месяца
    исследования). Значения предела прочности при раскалывании погруженных и циклически погруженных образцов снизились примерно на 21,6% и 19,3%, соответственно, через 2 месяца и примерно на 29% и 26.2% соответственно через 4 месяца по сравнению с контрольными образцами «А5», как показано на рис. (14).
    Рис. 14 . Прочность на разрыв при расщеплении LW-SCC, смесь «А5», при воздействии хлоридов с концентрацией 5% через 2 и 4 месяца
    Прочность на изгиб призменных образцов, погруженных и циклически погруженных в хлориды, снизилась примерно на 27,3 %, 23,3% соответственно через 2 мес и примерно на 31.5% и 37,5% соответственно через 4 месяца по сравнению с контрольными образцами А5, как показано на рис. (15).
    Рис. Прочность на изгиб LW-SCC, смесь «А5», при воздействии хлоридов 5% концентрации через 2 и 4 месяца
    4.2.2. LW-SCC при воздействии сульфатов
    Смесь LW-SCC «A5» была выбрана как лучшая смесь для изучения ее стойкости при воздействии сульфатов.
    Прочность на сжатие образцов LW-SCC снизилась после воздействия сульфата в течение 2 месяцев при непрерывном и циклическом погружении в раствор сульфата примерно на 30,1% и 20,6% соответственно по сравнению с контрольными образцами A5, как показано на рис. ( 16). Через 4 месяца прочность на сжатие образцов LW-SCC снизилась при погружении и циклическом погружении в раствор сульфата примерно на 49,2% и 39,7% соответственно по сравнению с контрольными образцами A5, как показано на рис. (16).
    Рис. 16 . Прочность на сжатие LW-SCC, смесь «А5», при воздействии сульфатов с концентрацией 20% через 2 и 4 месяца
    исследования). Значения прочности на разрыв при раскалывании образцов, погруженных в воду и циклически погруженных, снизились примерно на 27,3% и 23,3% соответственно через 2 месяца и примерно на 31,5% и 37,5% через 4 месяца по сравнению с контрольными образцами «А5», как показано на рис. (17).
    Рис. Прочность на разрыв при расщеплении LW-SCC, смесь «А5», при воздействии сульфатов с концентрацией 20% через 2 и 4 месяца
    %, 23,3% соответственно через 2 месяца и примерно на 31,5% и 37,5% соответственно через 4 месяца по сравнению с контрольными образцами А5, как показано на фиг.(18).
    Рис. Прочность на изгиб LW-SCC, смесь «А5», при воздействии 20%-ных сульфатов через 2 и 4 месяца

    5. Выводы исследовать поведение LW-SCC. Результаты, полученные в результате этого исследования, можно обобщить следующим образом:

    1. Конструкционный бетон LW-SCC можно получить с использованием керамзитобетона (LECA).
    2. Плотность полученных LW-SCC варьировалась от 1870 до 1950 кг/м 3 , что меньше веса обычного бетона плотностью 2450 кг/м 3 .
    3. Прочность на сжатие LW-SCC снизилась на 33,45% по сравнению с контрольной бетонной смесью. Прочность на разрыв при расщеплении и модуль упругости имели аналогичный характер.
    4. Армированные балки LW-SCC ведут себя так же, как обычные железобетонные балки.
    5.На долговечность смесей LW-SCC влияет доля заполнителя LWA.
    6. При воздействии хлоридов прочность на сжатие снизилась до 33,3%, прочность на растяжение при раскалывании снизилась до 29%, прочность на изгиб снизилась до 37,5% по сравнению с их контрольными образцами.
    7. При сульфатном воздействии прочность на сжатие снизилась до 49,2 %, при растяжении при раскалывании до 37,5 %, при изгибе до 37,5 % по сравнению с их контрольными образцами.
    8.Прочность легкого самоуплотняющегося бетона «LW-SCC» достаточна по сравнению с обычным самоуплотняющимся бетоном «NW-SCC» с поправкой на LW-SCC при воздействии хлоридов и сульфатов примерно на 33,3 %. и 49,2% соответственно.
    Как правило, лабораторные исследования подтверждают возможность производства структурного LW-SCC. Его использование целесообразно там, где необходим легкий бетон с характеристиками самоуплотнения, например, в оболочке и декоративных бетонах.По результатам испытаний на долговечность; LW-SCC рекомендуется использовать в условиях низкой и средней агрессивности. В случае агрессивных условий необходима бетонная защита/изоляция.

    Каталожные номера



    [1]   Б.Вахшоури, С.Нежади, Проектирование смесей легкого самоуплотняющегося бетона Примеры строительных материалов 4 (2016) 1–14.
    [2]   P. L. Domone, самоуплотняющийся бетон: анализ 11-летнего опыта, Cement Concr. Комп. 28 (2006) 197–208.
    [3]   Э. П. Келер, Д. В. Фаулер, Проект ICAR 108: Заполнители в самоуплотняющемся бетоне, Фонд заполнителей для технологий, исследований и образования (AFTRE) (2015).
    [4]   П. Ю. Линь, Ю. Ю. Чанг, К. Дж. Чен, С. Б. Вен. Приготовление легкого заполнителя из смеси маловодного пластового шлама и сухих порошков.В: Конференция и выставка технологии бетона TCI 2007, Бумага; 2007 [Н-5].
    [5]   С. Жардин, Г. Балоевич, А. Харапин, Экспериментальное исследование влияния мелких частиц на свойства самоуплотняющегося легкого бетона, Adv. Матер. науч. англ. 2012 (2012) 8 Статья ID 398567.
    [6]   М. Каффецакис, К. Папаниколау, Метод дозирования смеси для легких заполнителей SCC (LWSCC) на основе концепции оптимальной точки упаковки, Innovative Mater.Тех. Конкр. Констр. (2012) 131–151.
    [7]   Х.Ю. Ван, К.С. Цай. Инженерные свойства легкого заполнителя бетона, изготовленного из ила. Cem Concr Compos 2006; 28 (5) 481–5.
    [8]   T. Sonia1, R. Subashini1 (2015) «Экспериментальное исследование механических свойств легкого бетона с использованием LECA» ISSN (онлайн): 2319-7064 Index Copernicus Value (2015) 78-96.
    [9]   М.Губертова, Самоуплотняющийся легкий бетон с рабочими заполнителями. проц. интерн. конф., унив. Данди, Шотландия, Великобритания. 7 июля 2005 г.
    [10]   ECP203/2018, «Египетский свод правил: проектирование и строительство железобетонных конструкций», Исследовательский центр жилищного строительства и физического планирования, Каир, Египет, 2018 г.

    Методика расчета легкого бетона с пенопластом …

    Методология для дизайна для облегченного < strong>Бетон с вспученными глиняными заполнителями Ana M.Bastos 1 , Hipólito Sousa 2 и António F. Melo 3 В Португалии легкие керамзитобетонные заполнители (LECA) обычно используются в производстве легкого бетона, который в настоящее время составляет 10 % от общего объема бетона, произведенного методом динамического сжатия на португальских заводах. Использование наполнителей LECA увеличилось с тех пор, как они были представлены в 1990-х годах, после приобретения португальского завода компанией лидер промышленного мира производства LECA [Melo (2000)].Легкие керамзитовые заполнители до сих пор производятся на этом португальском заводе с использованием того же процесса, который использовался в на фабрике. >r европейских фабрик и с аналогичными химическими характеристиками (таблица 1) [Pöysti, M. and Geir Norden, G. (2000)]. Легкий бетон Vibrant Compressor в основном используется для изготовления сборных изделий, обычно кирпичных блоков и легких элементов для плит (рис. 1).В Португалии самыми популярными материалами для кладки являются глиняные блоки, большие и горизонтально перфорированные, которые используются для ограждения и внутренних стен [Sousa (2000)]. В европейских странах практика, связанная с легким бетоном для производства кирпичных блоков, аналогична и отличается от производства. >r бетоны: • производятся в специальных вибропрессовых установках (рис. 2), путем сильной вибрации и сжатия; • Содержание цемента обычно низкое в соответствии с требуемой прочностью, чтобы свести к минимуму стоимость и ограничить усадку; • Количество воды небольшое, что позволяет производить экструзию блоков сразу после формования без осадки; • Использование суперпластификаторов, воздухововлекающих и противовыцветших добавок не является обычным, по крайней мере, в странах Южной Европы.Важными факторами, влияющими на конечные свойства этих бетонов, являются класс и механическая прочность этого агрегаты, пропорции смеси, тип блочной машины и > процесс отверждения [Bresson J. and Brusin (1974)].поведение, обеспечиваемое объемом пустот, хотя с низкой механической прочностью. Для конструкционного использования нормальным является включение обычных заполнителей в бетонную смесь для достижения достаточной механической прочности [Moyer (1986) и Crestois (1986)]. До недавнего времени разработка легких бетонных смесей основывалась на опыте и знаниях компаний производители компрессорных систем.Исследования этих легких бетонных смесей ограничены Таблица 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован.